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A complete simulation procedure of the holographic process using Fourier approach is proposed. The algorithm elaborated

allows determining the field distributions in the object and hologram Fresnel regions. To show some advantages of the

method proposed one-dimensional computer simulations for a simple amplitude object case using Fresnel and Fourier holo-

graphic configurations are presented. The usefulness of the algorithm for image reconstruction from a hologram registered by

CCD camera is demonstrated.
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The first digital reconstruction of a holographic image was
accomplished by Kronrod, Yaroslawskii, and Merzlyakow
[1,2]. Their calculations were based on the Fresnel approxi-
mation of the Kirchhoff integral. Unfortunately, at that
time the laboratory equipment did not allow digital regis-
tration of holograms and the computer calculation power
was insufficient to introduce the new idea into practice.
Schnars and Jüptner proposed the setup for digital hologra-
phy [3,4]. The holographic process was divided into two
steps – the 1st registration of the hologram of an object with
the aid of CCD camera realised on the laboratory stand and
- the 2nd obtaining of the holographic image of the object
registered by computer calculations. The most important
advantage of such a process is absence wet processing con-
nected with the photographic material development. The
digital hologram can be stored and preliminary prepro-
cessed as well. The preprocessing is usually done to re-
move the zero diffraction order of the reconstructing beam
and other noises in the reconstructed image.
Generally, there are two methods to reconstruct digital

holograms: Fresnel approximation and the convolution ap-
proach [3,4]. Both methods have different properties. In the
convolution approach the zero diffraction order in the re-
constructed image is omitted. Additionally, the pixel size is
constant and independent of the image position. In conse-
quence, the reconstructed object area is equal to CCD ma-
trix area. When the object registered is larger than the CCD
matrix dimension, the whole holographic image should be
composed of several subimages, what constitutes an essen-
tial disadvantage of the method. In the Fresnel approach
the pixel size is variable depending on the reconstruction

distance. Moreover, strong zero diffraction order may dis-
tort the image demanded. To obtain a clear reconstructed
image some filtration should be performed.

In the paper, another approach based on the Fourier
transformation is proposed. In fact, it is similar to the Fresnel
approximation method. Additionally, the properties of a new
reconstruction procedure are analogous to the Fresnel ap-
proximation approach. However, the form of equations used
is adapted in the optical processes to both the registration
and reconstruction steps. Due to analogies with optical phe-
nomena, the approach proposed significantly simplifies the
analyses of the two steps of the holographic process. The
procedures corroborated using some numerical examples.
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As it was stated in introduction, the first step of the digital
holographic process is realised on a laboratory stand. We
propose to start with analytical considerations of a com-
plete holographic procedure. The analytical tools used for
both the registration and the reconstruction are the same.
Moreover, the analysis of the whole procedure makes pos-
sible to determine the influence of differences between the
laboratory and computational steps.
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In this section, for simplicity, the consideration is presented
for one-dimensional case. The equations for two-dimen-
sional case are similar and straightforward. The computa-
tional problems in both cases are the same as well.
Let zp(xp) be the coordinate describing the object shape

with respect to the plane � (Fig. 1). The complex amplitude
at the point P(x) of the hologram H, as the result of interfer-
ence of the object reference waves can be described by the
following equation
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are the distances RP and ApP, respectively. Vp and V0 are
the amplitudes of the wave fronts generated by the points
Ap and R at the distances rp = 1 and r = 1, respectively. The
sum is accomplished for all the object points Ap. The deno-
tation of remaining parameters used in Eqs. (1), (2), and (3)
is given in Fig. 1(a). Equation (1) is given in such a form as
to decrease the calculated values of phase differences. The
quantity � is related to unknown phase difference between
both interfering beams. The intensity distribution registered
by a CCD camera is given by

I V VH H H� * . (4)

In order to reconstruct the holographic image, the holo-
gram is illuminated by a wave generated by a virtual source
R’ [Fig. 1(b)]. The field distribution Vr at the hologram
plane can be expressed by

V
V

r
ik r Sr

r
r� �0

'
exp[ ( ' )]' , (5)

where V0r is the wave amplitude at r’ = 1. Its value depends
on the source power. The distances r’ and S’ correspond to
the distances r and S of the registration system, they are
marked in Fig. 1(b) as well. Assuming linear response of
the CCD camera the holographic field distribution generat-
ing the holographic image can be described by linear equa-
tion

V I VrH H r� . (6)

The field distribution at the holographic image plane
can be found from
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V x
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Due to small diffraction angles, what is the typical
case of the digital holography, the above relations can be
simplified putting sin� � � , expanding the roots in Eqs.
(2) and (3) into geometrical series or omitting amplitude

changes in all terms of the type V/r [5]. All proposed sim-
plifications accelerate the calculations. However, in all
these cases the summations of the fields at the hologram
plane or the image plane for two-dimensional system, or
even one-dimensional one, are still time-consuming pro-
cedures.
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We propose to change the above operations using the fast
Fourier transformation. As it was mentioned in introduc-
tion our method is based on the optical description of the
whole holographic process. In the method proposed the
sphere theory based on Fourier transformation is applied
[6]. Originally, this theory has been used to formulate the
diffraction equations for the light propagation in the Fres-
nel’s region. We would like to demonstrate that it can be
applied to describe the whole holographic process. For that
purpose the relation between two fields on two conjugate
spheres will be used (Fig. 2). If V(�) is the field distribution
on the sphere �0 with the centre at OH, then the field distri-
bution V(A) on the sphere �H with the centre at O� can be
found from the relation

V CFT V( ) [ ( )]–
A � � , (8)

where the parameterised linear co-ordinate at the hologram
plane is
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Fig. 1. Holographic registration (a) and reconstruction (b)
configurations: A – object, R – centre of spherical wave front
reference beam, H – hologram, R’ – virtual point source of

spherical wave front reconstructing beam.
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a(x,y) is the radial coordinate in the vector form at the holo-
gram plane, and C = 1/(�s). All distances will be defined
with respect to the hologram plane. Due to the sign rule
used in optics, the distance s in Fig. 2 is negative, therefore
the sign minus in Fig. 2, and in Eq. (9) as well.

For small diffraction angles the object shape described
by the function zp(�) can be considered as a phase distribu-
tion on the object plane zp = 0 (plane �) in the form

� 0 � kz p ( )� . (10)

So, it is sufficient to define the object as a complex am-
plitude distribution V0(�) at the plane �(zp = 0, see Fig. 2),
where

V V i0 0 0( ) ( ) exp( )� �� � . (11)

The quantity V0(�) is related to amplitude distribution
depending on the object reflection coefficient distribution.
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Let the object field distribution V0(�) on the object plane �
is known [Fig. 3(a)]. The field distribution on the reference
sphere �0 can be found from the relation
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According to Eqs. (8) and (9) the field distribution on
the sphere �H is given by

V CFT VH� �( ) [ ( )]A � �
0 � , (13)

and finally, the field distribution at the hologram plane is
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Equations (9) and (12)–(14) describe the field propaga-
tion between the object plane � and the hologram plane H.
According to the denotation of Fig. 3(a) the field distri-

bution at the hologram plane generated by the reference
source R is described by the following equation
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The linear phase term is related to the reference beam
inclination in the plane xpzp, VR0 is the constant amplitude
of the reference wave.
The interference result of the object and reference

beams is given by

V V V iH H RH� �0 exp( )� , (16)

where the quantity �, as in Eq. (1), is related to unknown
phase difference between both interfering beams.
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The intensity distribution registered by a CCD camera is
given by I V VH H H

*= [see Eq. (4)]. According to the deno-

tation of Fig. 3(b) the holographic field distribution at the
plane H generating the holographic image can be described
by [see Eq. (15)] for comparison]
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We have assumed that the reconstruction source Rr is sit-
uated at the plane xy as the reference source R and that the
registration process is linear. To find the image complex am-
plitude distribution it is necessary to consider the inverse
procedure to the registration one. This means, that the field
distribution at the image plane �’ have to be found for
known field distribution VH

' ( )a at the hologram plane [see

Fig. 3(b)]. In this case we have three analogical equations to
Eqs. (12)–(14). The field distribution on the sphere �H

' is
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the field distribution on the image sphere ��
' is

V C FT V H� �0
' '( ' ) ' [ ( ' )]� � �

A , (19)

and finally the field distribution at the image plane �’ is
given by
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Fig. 2. Sphere transformation principle.



FT+ denotes the inverse Fourier transformation opera-
tor. The relation between the parameterised coordinate A’
and the linear coordinate a is described by [see Eq. (4), for
comparison]

A
a

'� �
k

s'
. (21)

To prove the usefulness of the FFT approach, the pro-
posed two cases of the holographic process will be consid-

ered. First, the full simulation for one-dimensional analysis
of the hologram registration for a simple amplitude object
and its image reconstruction will be presented. Next, in
case of the reconstruction of its real image for the labora-
tory hologram registration will be determined.
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A chosen amplitude object is shown in Fig. 4. The phase in all
its points is equal to zero. The object was divided into 1000
samples, the distance between the adjacent object pixels is
equal to �xp = 5 µm. The remaining experiment parameters
are: the light wavelength � = 0.6328 µm, the distance between
the object and hologram planes s = –1000 mm, the position of
the reference source sr = –1600 mm and �r = 0.5�. The holo-
gram width equal to 10 mm was assumed.

To receive more detailed field distribution at the holo-
gram plane, the Fourier transformation was calculated for
N = 216 = 65536 samples. This means that outside of the
object area the amplitude values were taken as equal to 0.
Moreover, the ratio of the intensities of the reference and
object beams was chosen to achieve the maximum modula-
tion of the intensity distribution at the hologram plane.
Using the FFT procedure for N samples of a trans-

formed function, its Fourier transform is received for the
same number N of samples. According to the diffraction
theory, if �xp is the distance between the adjacent pixels of
the transformed function, then the distance �x between the
adjacent pixels of the Fourier transform can be found from
the relation

�
�

x
s

x Np

�
�
, (22)

where s is the distance between the object and hologram

spheres, see Fig. 3(a). The value �x is indispensable to find
the field distribution (number of the samples) registered on
the hologram.
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Fig. 3. Notations for hologram registration (a) and reconstruction
(b) systems.

Fig. 4. Amplitude distribution of the registered object.



A general view of the central part of the intensity distri-
bution at the hologram plane is shown in Fig. 5. The results
were obtained with the aid of Eqs. (12)–(14). According to
the Nyquist requirement every hologram fringe should be
registered by at least two pixels. To verify the correctness
of the registration process the diagram of the number of
pixels for one fringe vs. the fringe number is shown in
Fig. 6.

Using Eqs. (18), (19) and (20), the field distribution
at an arbitrary plane located within the distance s’ from
the hologram plane can be obtained. The intensity distri-
bution at the real image plane (s’ = s), after removing the
constant from the hologram field, is shown in Fig. 7. In
this case the reconstruction source R’ is coincident with
the reference source R (s’r = sr, �’r = �r). Three typical
components at the image plane are seen: real image, re-
construction source trace and defocused conjugate im-
age. The transverse magnification of the real image is
�r = s’/s = 1 [7, Chapter 2] and from the theoretical point

of view the real image should be identical with the ob-
ject. However, distinctly seen intensity oscillations and
their sharp changes at the object edges (due to Gibbs’ ef-
fect, [8]) are typical for the diffraction phenomenon re-
lated to limited hologram dimensions. When focusing on
the conjugate image plane [s’ = ssr/(2s-sr) = –4000] a
sharp conjugate image and defocused real one are ob-
tained [7]. Their forms are similar to real and conjugate
images shown in Fig. 7, respectively. The word “similar”
has been used to emphasise the change of the transverse
magnification of the conjugate image equal to �c = –s’/s

= –4x.
For the Fourier hologram, when the object and the ref-

erence sources are situated at the same plane (s = sr) the
real and conjugate images are situated at the plane coinci-
dent with the reconstruction source (s’ = sr). Such a situa-
tion is shown in Fig. 8. The transverse magnifications of
the real and conjugate images are equal to � = 1 and
�c = –1, respectively.
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Fig. 5. Intensity distribution at central part of the hologram plane.

Fig. 6. Verification of Nyquist’s condition. The diagram of number
of pixels used for registration of individual fringes.

Fig. 7. Amplitude distribution at the real image plane of the Fresnel
hologram.

Fig. 8. Amplitude distribution at the real image plane of the Fourier
hologram.



The amplitude and phase distributions for the separated
real image in the case shown in Fig. 7 are shown in Fig. 9.
The distributions for both the amplitude (a) and the phase
(b) undergo distinct oscillations. As it was mentioned
above such oscillations are encountered due to the limited
hologram dimensions. They decrease with increasing the
hologram dimensions. To demonstrate it, the holographic
images for the hologram widths equal to 30 mm (dashed
line) and 10 mm (solid line) are shown in Fig. 10. Intensity
oscillations are observed outside the image of the object
area as well. Additionally, at in many points the intensity
value reaches zero, what leads to phase oscillation jumps
between –� and �. Therefore phase values in the object
area are presented only [see Fig. 9(b)].
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The reconstruction procedures, Eqs. (17)–(21), were ap-
plied to hologram reconstruction of the object registered by
the CCD camera. The experiment was done using holo-
graphic configuration shown in Fig. 11. The bolt shown in
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Fig. 9. Amplitude (a) and phase (b) distributions of separated real
image area. The scale differences of image width are introduced for
more clear presentation of the phase distribution oscillations.

Fig. 10. Reconstruction amplitude for two different hologram sizes.

Fig. 11. Scheme of experimental arrangement used for digital
hologram registration; M – mirror, BS – beam splitter, P – pinhole
with focusing objective, O – imaging objective, C – collimator.

Fig. 12. Holographically registered object.
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Fig. 12 was located at the distance 600 mm from the sur-
face of the CCD matrix. The reference beam collimated by
the collimator C and reflected by the beam splitter im-
pinges on the CCD matrix to interfere with the object
beam. The fringe distribution registered by the camera is
presented in Fig. 13. The intensity distribution at the holo-
gram plane was sampled by 1024�1024 pixels. An example
of the reconstructed real image is shown in Fig. 14. It is
easy to observe that the image is surrounded by noise,
formed by residues of the part of the zero diffraction order.
It is worth to add that limited number of pixels reduces the
quality of the reconstructed image due to the diffraction
phenomena.

!� "�����
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The analyses numerical results obtained prove that the
sphere transformation theory applied to one-dimensional
holographic process simulation as well as to the reconstruc-
tion of two-dimensional holograms is quite useful. The ap-
proach enables analysing various holographic configura-
tions, namely, with different positions of the object, the ref-
erence and reconstruction sources and arbitrarily chosen
image planes. Estimation of the influence of parameter dif-
ferences between the reference and reconstruction beams
on the holographic image quality is especially easy. The
problem of the influence of beam aberrations at the regis-
tration stage will be the subject of the forthcoming paper.
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