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We report on development of MSM and Schottky barrier visible blind detectors on gallium nitride which exhibit responsivities

of 0.5 A/W and 0.1 A/W respectively. GaN band edge absorption occurs at 365 nm and naturally provides “visible blindness”

of devices. The fabricated Schottky barrier devices exhibit flat spectral response for the UV light. Typical dark current of de-

tector is 1 nA per square millimetre. The estimated detectivity and noise equivalent power of our devices are close to the best

reported elsewhere.
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The epitaxial structure of both types of devices is described

in Table. 1.

Table 1. Epitaxial structure of devices.

Material Doping/concentration Thickness

GaN Undoped 1.00 µm

GaN Silicon / 1017 cm–3 0.50 µm

GaN Silicon / 2.5�1018 cm–3 0.75 µm

GaN buffer Undoped 3.00 µm

Sapphire substrate

This structure was grown in the MOCVD reactor using

standard metalorganic chemistry. The processing of a

Schottky barrier type of detector was the following. The

ohmic metal contact to the buried n+ layer was in a shape of

the rectangular frame placed at the bottom of mesa. We

etched mesa in the RIE system using BCl3 gas. The contact

sandwich consisted of Ti/Al/Ni/Au layers sputtered in one

single process. Contact metallisation has been alloyed at

400�C in the N2 atmosphere for 5 minutes.

At the mesa top we deposited Schottky barrier metal in

the two steps. First, we evaporated Ni/Au thin metallisation

which was semitransparent in the UV range (transmission

was checked in Beckman spectrum analyser and its value

was 55% for the wavelength of 350 nm). Second, we evap-

orated 0.5-µm thick gold frame at the perimeter of a thin

contact area using lift off technique. The general view of

the chip is presented in Fig. 1.

Processing of the MSM detector was different. We

started with SiO2 passivation of an entire wafer and then

we defined isolation of the bonding pads leaving the rest of

surface exposed. Then we evaporated Ni/Au metallisation

which has a very fine pattern. In Fig. 2, one can see differ-

ent device geometries integrated in one mask. We report

here on devices which have 1-µm wide metal strips sepa-

rated by 1 µm gap of exposed GaN. Effective detector area

has a shape of the square 100�100 µm.
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In both types of devices we used the nickel Schottky bar-

rier. Its height we estimated out of the capacitance-voltage

(C-V) characteristics. Generally, we noticed different val-

ues of barrier height (0.5–1 V) depending on semiconduc-

tor doping and on surface preparation before the metal de-

position step.
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Fig. 1. Chip of the Schottky barrier detector.



The intentionally undoped top-layer exhibits, after the

C-V analysis, n-type conductivity with donor concentration

of (2–5)�1015 cm–3 . This value is an indicator of a good re-

actor status. The current-voltage (I-V) dark current charac-

teristic of the Schottky type of detector is presented in Fig.

3. We reached a level of approx. 1 nA per millimeter

square which value is frequently reported. The ideality fac-

tor of diodes was smaller than 1.05. The I-V curve of MSM

detector is presented in Fig. 4. The dark current value is

10–7 A.

Responsivities of detectors have been measured in an

arrangement consisting of xenon arc lamp, dense diffrac-

tion grating and the lock in amplifier. Devices were illumi-

nated from the front side and operated without external bias

in a case of the Schottky barrier detector and with a bias of

1.5 V in the case of the MSM detector.

In Fig. 5, we can see semiconductor absorption edge at

365 µm, responsivity of 0.1 A/W and a UV/visible rejec-

tion ratio of 103.

The same analysis for MSM type of device shown in

Fig. 6 reveals the record value 0.5 A/W of responsivity

which has been obtained due to the high internal gain of the

device. This feature can be predicted out of Fig. 4, where

the photocurrent I-V curve has a very steep slope compared

to the dark current I-V relationship.

We have estimated detectivity of our Schottky barrier

detector after direct measurements of the low frequency

noise. Measurements set up consisted of the home made

current preamplifier and the Agilent 35670 A dynamic sig-

nal analyser. In Fig. 7, one can see that after applying ex-

ternal bias noise spectra become of 1/f type. Using the val-

ues of noise intensities for frequencies above 500 Hz we

estimate minimum Jones type detectivity at 2.2�1011

cmHz1/2W–1 and NEP at 2.2�10–13 W/Hz1/2. Values of

these parameters found in the literature are similar [1–3]

except record values estimated for p-i-n photodetectors

[4,5].

Properties of metal-semiconductor-metal and Schottky barrier GaN detectors
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Fig. 2. A set of MSM detectors on GaN.

Fig. 3. I-V characteristics of GaN Schottky barrier detector.

Detector area of 0.8 mm2.

Fig. 4. I-V characteristics of GaN MSM detector. Electrode width

1 µm, separation of electrodes 1 µm. Effective detector area

100�100 µm. Illumination with Pen-Ray IISC-1 lamp equipped in

filter G-278 (365 nm). Light power 65 µW.

Fig. 5. Spectral response of GaN Schottky barrier detector for

unbiased device.
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We have described experimental studies of the visible blind

detectors on gallium nitride and report the following pa-

rameters of our Schottky barrier detector on GaN:

• responsivity 0.1 A/W,

• UV/visible rejection ratio 103,

• detectivity 2.2�1011 cmHz1/2 W–1,

• noise equivalent power 2.2�10–13 W/Hz1/2, and

• responsivity of 0.5 A/W of MSM detector.
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Fig. 6. Spectral responsivity of GaN MSM detector.

Fig. 7. Low frequency current spectral noise densities of GaN

Schottky barrier detector.
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