
����������	
����	���
��
����	����
����	���	����
���	������������
��	������	�������	��
���
��

D. ZHECHEV* and N. PARVANOVA

Institute of Solid State Physics, Bulgarian Academy of Sciences

72 Tzarigradsko Chaussee Blvd., BG-1784 Sofia, Bulgaria

Based on the excitation space anisotropy a partial polarisation of the spontaneous emission is found in hollow cathode dis-

charge. This polarisation is ascribed to existing spontaneous coherence, i.e., self-alignment of the excited states. The align-

ing factors are the beam-like fast electrons from the cathode dark space. An expression for observed signal of the spontane-

ous emission magnetic depolarisation is obtained. Within the frames of the ordinary opto-galvanic effect a separate coherent

conductivity is analysed. A poor coherent conductivity due the self-aligned states is detected.

Keywords: hollow cathode discharge, excitation space anisotropy, coherence, self-alignment, opto-galvanic effect and

coherent conductivity.
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The unique sputtering-excitation properties have lately

traced much interest to hollow cathode discharge (HCD)

within modern spectroscopic investigations. In particular,

HCD extends the application field of absorption spectros-

copy, opto-galvanic (OG) spectroscopy, spectroscopy of

interfering excited states. The interfering quantum states

are known to enrich the conceptions about the atom sys-

tem. The latter manifests itself as a more dynamic one in

this kind of experiments [1]. HCD adds high lying states as

well those of the sputtered atoms to the above fields.

A variety of interfering states are the degenerated mag-

netic ones; here the interference manifests itself as polaris-

ation P of their spontaneous emission. The necessary condi-

tion, i.e., coherence may be introduced (alignment, orienta-

tion) or spontaneous (self-alignment) but it is always based

on the space anisotropy of the excitation. Spontaneous co-

herence enlarges the objects of, so-called, zero magnetic

field level crossing technique: a magnetic field B applied to

the coherent ensemble of atoms destroys its coherence de-

polarising the emission if B direction is orthogonal to the

(self-) alignment axes and a Magneto-Optic (MO) resonance

of magnetic depolarisation P(B) may be detected.

On the other hand within the frames of light-induced co-

herence the absorbed light generates one more effect, i.e.,

light-induced conductivity (OG effect). The latter arises due

to decrease of the efficient potential of ionisation and/or to

the electron mobility change. Having laser-aligned degener-

ated magnetic states Hannaford [2] detected an OG analogue

of the magnetic depolarisation P(B).

In this report, the excitation space anisotropy in HCD is

discussed as well the excited states self-alignment and their

galvanic analogue.
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The results of two separate investigations are the starting

point of understanding spontaneous coherence, i.e.,

self-alignment in HCD. By using an electrical probe of rect-

angular shape Borodin and Kagan detected anisotropy of the

electron velocity space in the Negative Glow (NG) of HCD;

the higher buffer gas pressure reduces this anisotropy [3]. An-

other HCD diagnostic procedure was used in Refs. 4 and 5.

By using a two-position Fabry-Perot interferogram the shift

�� of spectral line centre was observed along the radius. At

the boundary NG-CDS, the value of �� gives

(3.0–3.7) kV/cm intensity of electric field. Later, these values

were confirmed by OG way [6]. However, at p < 0.2 Torr we

observed that the shift �� takes place (�� � 0) in the NG too.

It means that electric field penetrates into the NG and keeps

the dominating radial velocity vector of the fast electrons

here. Thus, this space anisotropy should (self-) align the ex-

cited states along the radius and plane polarised emission

should be detected.
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Hanle was the first to observe magnetic depolarisation of

the spontaneous emission originating from mercury optical

transition irradiated by plane polarised resonant light [7,8].
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The latter aligns the degenerated magnetic sublevels distin-

guishing in magnetic number m as �m = 0, �2, they emit

light of the same polarisation. An external magnetic field

decreases this polarisation degree by destroying the in-

duced alignment. Later, this coherence was generalised as a

result of the exciting process space anisotropy, i.e., as a dif-

ference between axial, radial and tangential light beams in

a positive column of the discharge [9]. This kind of align-

ment realised in the discharge without any external action

is called self-alignment. It is known to manifest itself only

optically as polarisation of the spontaneous emission from

(self-) aligned ensemble of atoms.

Penning was the first to detect another property of the

gas discharge, i.e., its added light-induced conductivity

[10]. Having absorbed a light portion at any optical transi-

tion, the discharge changes its current/voltage due to

light-induced population transfer. These galvanic variations

turned out to be more easily and precisely measurable than

the absorbed light. A new technique known as OG spec-

troscopy is based on these considerations. Here, the dis-

charge cell plays the role of OG detector illuminated by a

light beam.

OG effect provokes a new aspect of spontaneous coher-

ence manifestation. Really any OG arrangement predetermi-

nes coherent excitation of the irradiated transition [1,9]. Does

the self-aligned state possess proper coherent conductivity?
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The (self-) aligned state manifests itself in the plane polar-

isation P of proper spontaneous emission. Our results in

Refs. 4 and 5 provoke polarisation measurements. The

measured intensity in two orthogonal polarisation, i.e.,

along the radius Ir and orthogonal Ih gives the degree of

polarisation P = (Ir – Ih)(Ir + Ih)
–1 in a cylindrical HC. How-

ever, the latter complicates the polarisation analyse. Figure

1(a) illustrates the used two parallel nets – HCD. The axis

OX coincides with the fast electron velocity vector and it is

the only axis of excitation anisotropy. Indeed, Fig. 1(b)

shows a top polarisation close to the cathode-net where the

polarisation Ir || OX is maximum and decreases vs. dis-

tance. One is to note that polarisation signal-to-nonpo-

larised emission ratio is �10–3. The orthogonal polarisation

keeps constant. The buffer gas pressure p destroys this

polarisation at p > 0.5 Torr.

Generally, the observed intensity of polarisation
�

e i.e.,

I(
�

e) at the transition J1 � J2 (J – angular moment) may be

described in the terms of the statistical tensor � q
k , the tensor

of excitation Fq
k , the coherence decay time-constant �2 and

the emission -polarisation tensor F e� q
k ( ) [1]
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and 	 is the frequency difference between the interfering

states. The terms containing � 0
0 give the emission mean in-

tensity (i.e., the population), which is the background to the

interference terms containing � 0
2 and ��2

2( )
– the contribu-

tion of the coherence.

If the observed polarisation [Fig. 1(a)] is due to (self-)

aligned state, the magnetic field B applied orthogonally to

the (self-) alignment axis OX should destroy this coherence

(the second term) and a MO resonance P(B) may be de-

tected in a scanning B is the field according to Eq. (1). Fig-

ure 2 confirms the coherent character of the observed

polarisation.
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Fig. 1. Scheme of the analysed two-plate hollow cathode (a). Spectral line HeI 501.6 nm, intensity and polarisation P distribution along the

normal to the cathode surface (b).



The observed resonance in Fig. 2 may be described in

the above mentioned electron beam – like approach [Fig.

1(a)] and continuous time excitation (power supply = U).

Each electron-aligned level emits spectral line of intensity

I, depending on the magnetic field B

I I dt t t� � �
�

�0
2

0

exp( ) cos ( )� 
 � ,

where � characterises the oscillator damping, 
 = gB – its

Larmor’s precession frequency in B, � is the angle between

the self-alignment axis and the vector of the observed

polarisation. At the end the intensity may be described by a

Lorentzian lying on a decreasing background slope (Fig. 2)
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where L/R < 1, R = cB–1(2mUc/e)
1/2, c light velocity, L is

the distance K-K. Equation (2) contains coherent and

noncoherent terms, corresponding to those in Eq. (1).
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The OG signals from aligned and oriented ensembles of

atoms are detected and compared. A conventional OG

measuring circuit is used (Fig. 3). The magnetic field B

is off. Trademarks HCD lamps are irradiated by 632.8

nm laser line. A 
/4 �filter transforms the plane polaris-

ation into circular. One should be taken in mind two cir-

cumstances:

• two compared OG signals belong to the same optical

transition but different magnetic states: plane polaris-

ation is absorbed at the magnetic transitions m = 0 � m

= �1 (aligned ensemble) till circular polarisation at ei-

ther m = 0 � m = 1 or m = 0 � m= –1 transition.

Therefore the conductivity of aligned and oriented en-

sembles should be close,

• fact self-alignment m = 0 � m = �1 in HCD does not

influence this comparison since the OG signals are de-

tected at the frequency of laser beam modulation

(485 Hz).

Figure 4 illustrates the measured OG signals. They sug-

gest closeness and some differences of the OG reactions of

aligned and oriented ensembles. The difference may be re-

lated to the specific proper coherent conductivity. In order

the proper coherent conductivity of the self-aligned ensem-

ble to be identified, the circuit of Fig. 3 is used at switched

on scanning B – field and without any illumination. If an

optical channel (plane polarisation filter – monochromator

– multiplier – lock-in amplifier – recorder) has been added

two resonances can be detected simultaneously. Besides
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Fig. 2. Signal of self-alignment of level HeI 3p1p0 detected by

accumulation in two orthogonal polarisations of spectral line HeI

501.56 nm (pHe = 0.15 Torr, 10 mA).

Fig. 3. Optogalvanic measuring circuit: Rb is the ballast resistor, Rm

is the measuring resistor, �U is the optogalvanic signal. B is the

magnetic field (Helmholtz coils) in magneto-galvanic

measurements.

Fig. 4. OG signals from plane polarised (aligned ensemble) and circularly polarised (oriented ensemble) light.



MO peak P(B) for selected spectral line (Fig. 2) a galvanic

signal �U/�B with a shape close to the first derivative of

voltage U as a function of magnetic field, is detected by

modulation of B with an alternative component Bm (Fig. 5).

We call this unknown up to date signal magneto-galvanic

(MG) one. The two signals correlate in magnetic field di-

rection, i.e. increase and decrease. This correlation means

that the MO and MG resonances represent two manifesta-

tions of the same coherence, i.e., self-alignment. However

MG peak is an integral galvanic indication of the coherent

state.
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Both the commensurability of the contact surfaces cathode �
cathode dark space � negative glow and the electric field

penetrating into NG predetermines strong electron excitation

space anisotropy in HCD. This anisotropy (self-) aligns de-

generated magnetic states along the normal to the cathode sur-

face and their coherence manifests itself optically in partial

plane polarisation of the spontaneous emission at low buffer

gas pressure p < 0.5 Torr. The degree of polarisation P in-

creases near the NG. An external magnetic field destroys es-

tablished self-alignment and an MO signal P(B) is detected.

Another analogue, i.e., galvanic one �U(B) of the self-alig-

nment is also identified. This means that the coherent ensem-

ble of atoms possesses proper coherent conductivity.
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Fig. 5. Shape of magneto-galvanic resonance in Ne/Cu (“Narva”)

HCD lamp. Experimental signals at discharge currents: 1–0.5 mA,

2–1.0 mA, 3–1.25 mA, 4–2.0 mA, 5–3 mA, 6–4.0 mA, 7–5.0 mA.

Magnetic field directed along the axis.


