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This paper presents the robust colour image segmentation algorithm which can be used extensively in automated optical in-

spection system on the printed circuits boards (PCB) assembly line. The robustness of the presented algorithm is increased by

low computational effort what dedicates this approach to on-line vision systems explored in high-speed production lines. The

second advantage of the proposed algorithm is the non-parametric solution which is invariant to changes of light and colour

of the inspected components. This condition should be fulfilled with the vectoral imaging approach where the most important

task is the segmentation process which divides image space into disjoint regions with similar colour or texture.
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1. Introduction

Over the past two years, vectoral imaging technology has

emerged as a real solution to the requirement of inspecting

populated printed circuits boards at the speeds compatible

with today’s high-speed production lines. This approach is

relatively fast and is not adversely affected by changes in

colour, background, size, and rotation. Vectoral imaging

technology is a pattern location search technology based on

geometric feature extraction rather than absolute colour

pixel values. Patterns are not dependent on the pixel grid.

A feature is a contour that represents boundary between

dissimilar regions in the image. Industrial standards allow

for changes in both size and shape of components which

are acceptable in industry. Any vision system used for this

application has to take into account as well as the changes

in appearance due to vendor variations and different manu-

facturing processes. Another major advantage with vectoral

approach is the elimination of background features that

may cause false failures. With inspecting the same compo-

nent on different printed circuit boards, the board layout

changes dramatically due to circuitry and density. This can

induce false failures when using classical correlation ap-

proach used in template matching. That is why the image

segmentation is the first and very important process in au-

tomated optical inspection based on the vectoral imaging.

Segmentation is a process of dividing an image into dif-

ferent regions such that each region is homogeneous but the

union of any two adjacent regions is not. Many of the exist-

ing colour image segmentation approaches [1,2] are based

on the monochrome segmentation techniques where the sin-

gle components R, G, and B or their transformations (lin-

ear/non-linear) are explored independently of the others. The

results obtained from these single components are often dif-

ficult for unambiguous interpretation. To overcome this

shortcoming, the analysis of the multidimensional feature

space is required. The analysis of this space is very often

time-consuming particularly in case of computer vision

problems where a large “mass of the data” is connected to

the image. The approach proposed in this paper is based on

one of the widely used techniques for feature space analysis

called clustering. The points in the feature space correspond

to feature vectors describing points (pixels) in the image

space. Colour images can be characterized by three-dimen-

sional histograms, and thus, we have three-dimensional fea-

ture space in which clusters or modes correspond to pixels

with similar colours called image regions.

One of the drawbacks of the feature space clustering is

that the cluster analysis does not utilise any spatial infor-

mation from the image space that considers the spatial rela-

tion among pixels. The second and the most serious prob-

lem is difficult determination of the number of clusters (im-

age regions) in the unsupervised clustering scheme which

is known as cluster validity. The next, crucial problem for

the colour image segmentation is the selection of the appro-

priate colour space (feature space). RGB colour space is not

appropriate for colour space clustering because of the high

correlation of among R, G, and B, therefore an object with

a uniform colour but different intensities could be seg-

mented into different objects. In other words, a colour im-

age with shadows or some shading cannot be segmented

properly in RGB colour space. The proposed algorithm is

based on the modified HSI colour space. The modification

of HSI colour space has been already presented in Ref. 3
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where accurate analysis of this colour space is included.

The advantage of the HSI colour space for the task of im-

age segmentation is invariance to changes of the light what

next implicates that data in this feature space will be coher-

ent and well separated. The last problem is connected with

the fact that real images always include some “lack of pre-

cision” or fuzziness. That is why it seems naturally to map

colour space into the fuzzy domain that takes into consider-

ation this characteristic.

In this paper, the colour segmentation algorithm is pre-

sented that performs colour image clustering based on the

novel interpolated multi-resolution density function ap-

proximation in the modified and “fuzzified” feature space.

The proposed method is not burden with the problems

mentioned above. Block diagram of the proposed method is

presented in Fig. 1.

The paper is organized as follows. In the first section,

the concept of spatial feature based on the fuzzy homoge-

neity vector is presented [4]. The next section deals with

mapping of the colour space feature into the fuzzy domain.

The degree of fuzziness of the image is next measured by

the inverse entropy. The following section describes the in-

terpolated multi-resolution density function approximation.

In the same section, the cluster validity measure based on

multi-resolution idea is also introduced. On the basis of this

measure, the input parameters are changed for the pre-

sented approximation. The last section demonstrates the

segmentation results and effectiveness of the proposed

technique in the task of the automated optical inspection

system on the printed circuits boards (PCB) assembly line.

2. Fuzzy homogeneity vector as the spatial
feature

The proposed method takes into account not only informa-

tion from the colour space but also considers the spatial re-

lation among the pixels described by the angle-related

quantity called a homogeneity vector [4]. With every pixel

I(p) from the image I, the neighbouring pixels of the dis-

tance d angularly related to the pixel p are associated.

Let our colour space C will be modified HSI* colour

space described in Ref. 3 and the values c(i,j) and c(k,l) are

the colours of two pixels located at (i,j) and (k,l) in the im-

age I, where C Î Â3 and c Î C. The degree of homogene-

i ty between these two pixels is expressed by

( )d Z c i j c k l( , ) ( , )- and d Z x( ) is defined as follows

where x c i j c k l= -( , ) ( , ) , the symbol means Euclid-

ean’s metric, and r, s, and t are the parameters.
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Fig. 1. The block diagram of the proposed color segmentation algorithm.
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The property of homogeneity could be characterized by

the vectors h(c,d) which sum the degree of homogeneity

occurring between the pixels with colour c Î C and its

neighbours with different angular q and the neighbouring

distance d defined as follows

where q = 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, d = 1

and c* denotes the colour of the reference pixel. Due to

symmetric nature, these eight fuzzy homogeneity vectors

could be reduced to four vectors. We could average the re-

sulting four angular fuzzy homogeneity vectors to obtain

the homogeneity vector h(c*,d) which will diminish the ef-

fect of rotation

h c d

h c d h c d h c d h c

( , )

[ ( , , ) ( , , ) ( , , ) ( ,

* =
= ° + ° + ° +1 4 0 45 90 135°, )]d

. (3)

3. Fuzzy entropy based spatial and colour
feature�s density distribution construction

Let F = (f1, f2 ……fL), where FÎ Â3 and L = {1, 2, 3, …,

224} be a set of fuzzy membership values which are ob-

tained by mapping the colour space C into the fuzzy do-

main C ® F using the membership standard S function dS

[5] and is defined as

f ca S= d ( ), (4)

where a Î L.

The real images always include some “lack of preci-

sion” or fuzziness, which in colour images is represented as

“light/dark colour” or rather “more/less saturated colour”.

That is why it seems naturally to map the saturation com-

ponent cSat into the fuzzy domain as the following

f ca S Sat= d ( ). (5)

When the pixel membership value fi equals 1.0, it

means that it has complete (pure) colour and when fi = 0

the colour information is not included. For fi = 0.5 we re-

ceive the maximum fuzziness. The degree of fuzziness was

usually measured by the entropy E under the fuzzy set F

and in the previous work it was used for image

thresholding [6]
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where M and N are the numbers of rows and columns of the

image I, respectively, and S(a) is the Shannon’s entropy

function defined as

S( ) ln ( ) ln( )a a a a= - - - -1 1 . (7)

When a = 0 or a = 1.0 we receive minimum and when

a = 0.5 the maximum entropy value. In our case it should

be interpreted that the pixels with minimum entropy form

pure colour or colourless (monochromatic) image regions

and with maximal entropy the regions with maximal fuzzi-

ness. The clustering algorithm requires feature (colour)

space in which modes (peaks) could be interpreted as col-

our or monochromatic image regions. These modes will be-

come cluster prototypes, i.e., the points with minimal fuzzi-

ness. Therefore for this reason the Shannon entropy func-

tion S(a) should be reformulated into S*(a) according to

the formula

S
S S

* ( )
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a
a a

a
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Finally, the fuzzy entropy-based density distribution on

the feature space that combines spatial information as the

fuzzy homogeneity vector and the fuzzy colour property

can be reformulated from Eq. (6) to the following
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where the following conditions are fulfilled
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4. Interpolated multi-resolution approach for
density function approximation

The pixel’s attributes of a colour image can be repre-

sented as a 3D vector in the feature space F described in

the previous section. The only one constraint is that this

space should be isotropic, i.e., the distance between any

two points is independent on their location.

Let E(F) be the histogram-type function, which repre-

sents the sum of the entropies for all pixels from the image

located in the fuzzy domain F, according to Eq. (5). The

distribution E(F) of the image can be spread, and can also

be condensed. The only constraint is that the feature space

volume is limited. The feature space is of the size of

256´256´256. The proposed method assumes that ana-

lysed feature space is quantised into cuboids. The size of a

single cuboid is always 2 2 2
p p pX Y Z´ ´ where pX, pY, and
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pZ denote the sizes on every dimension. This assumption

makes possible further fast computation by using bit shift op-

erations. The every single cuboid is divided into four cuboids,

every of size: 2 2 2
1 1 1( ) ( ) ( )p p pX Y Z- - -´ ´ . The idea of a

cuboid’s definition in feature space is presented in Fig. 2.

The set of cuboids about the same size defines a single

grid. The number and the size of the grids are the method’s

parameters which decide about the final approximation.

The algorithm counts, through out the grids, the values Ei

(x’,y’,z’) included in the cuboid V
x y z
i
¢ ¢ ¢, ,

indexed in i-th grid

by (x’,y’,z’) according to the following

E x y z E Fi l

F Vx y z
i

( , , ) ( )

, ,

¢ ¢ ¢ =
Î ¢ ¢ ¢

å
1

. (11)

The value of the density function gi (x,y z) is therefore

defined as the following

g x y z E x y z Vi i x y z
i( , , ) ( , , )
, ,¢ ¢ = ¢ ¢ ¢ ¢ ¢ ¢ , (12)

where V
x y z
i
¢ ¢ ¢, ,

is the volume of the cuboid. The values of

the density function gi-1 (x’,y’,z’) received in the (i–1)-th

grid differ from gi(x’,y’,z’) in the “size of working” and the

precision. The more dense grids there are, the more they

are “able to detect” local peaks (modes) in opposite to

fewer dense grids, in which the global modes are “better

seen” what effects on densities like low-pass filtering.

The mean interpolated density function approximation

for i-th grid at any point (x,y,z) is defined as following

g c g p V Verpol
i

i k k
k

M
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i
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ö
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1
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where pk are the centroids of the nearest neighbours of the

point reference point located at coordinates (x,y,z), Vk are

the volumes of subcuboids (in Fig. 3 depicted as V1, V2, V3,

V4) and M is the number of the nearest neighbours. The

geometric scheme of this definition is presented in Fig.3

(for simplicity depicted in 2D)

The multi-resolution conception is based on the fact

that grids of the different sizes take into consideration the

contribution of the density distribution at the different reso-

lutions (multi-scale approach). The final definition of the

interpolated multi-resolution density function g(x,y,z) is

therefore weighted superposition of the density function at

the different resolutions described by the formula

g x y z w g x y zi
i

i

K

( , , ) ( , , )= ×
=
å interpol

1

, (14)

where wi are the values (weights) of the Gaussian distribu-

tion N (pi,s) located at the centroids pi of the cuboids in the

i-th grid and K is the number of grids (s means the standard

deviation).

5. Clustering algorithm and cluster validity
measure

The clustering is performed by locating the peaks of the ap-

proximated three-dimensional entropy distribution

g(x’,y’,z’) in the most dense grid where cells are indexed by

triplet (x’,y’,z’). This is done by a peak-climbing (val-

ley-seeking) algorithm developed by Koontz, Narendra,

and Fukunaga [7]. The procedure is illustrated in
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Fig. 2. The idea of cuboid’s definition in the feature space.

Fig. 3. The geometric scheme of the interpolated density function

approximation at point located at coordinates (for simplicity

depicted in 2D).



two-dimensional space in Fig. 4, where the number in each

cell represents hypothetical values g (x’,y’,z’) in points of

which are the centroids of the cells.

The maximal bins become cluster prototypes and the

bins related to this prototype belong to this cluster. It is

clear that input parameters: the cell’s size in the most dense

grid and the number of the grids play a major role in the

success of the algorithm. A very small cell size would pro-

duce a flat distribution with no significant peaks, while too

large may combine several peaks into a single mode, giv-

ing erroneous results in segmented image in form of the

merged regions.

As it can be seen in Figs. 5(a) and 5(b), the number of

the grids with the same size of the smallest cuboid affects

the values of g(x’,y’,z’)in the following way: if close to the

any mode is located another not so much smaller mode the

values of g(x’,y’,z’) increase rapidly. Therefore it means

that this cluster prototype “attracts” the nearest smaller

modes that cause increasing g(x’,y’,z’).

In practice (segmentation’s result), it results in merging

significant and similar colour image region which is not de-

sired. Let Dg(i, i +k)(x’,y’,z’) be the difference between the

density values in i-th grid and (i + k)-th grid (k Î {1,2,3,4})

defined by the Camber’s measure

Dg x y z

g x y z g x y

i i k

i i k

( , )
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where

Dg(i, i +k)(x’,y’,z’) Î < 0.1 >

Based on this difference, the cluster validity measure

F is defined in order to express the cluster separability

which is identified as the cluster validity measure

F

D D

( ,..., )

( ) ( ) ( , )( , ) ( , )

P P

g P g P d P P

L

m m m n n n m n
n

1

4 4

=

= -+ +
¹=
åå

mm

L

1

, (16)

where L is the found cluster number, the symbol means

a norm, and d is the Euclidean distance. The optimal num-

ber of L clusters and the location of the cluster prototypes

are met when this measure is maximized, i.e.,

F F= max{ ( ,..., )}P PL1 . (17)

In the task of the automated optical inspection system,

the procedure of adjusting the input parameters for the pro-

posed approximation on the basis of the proposed measure

F is computationally expensive. However, this procedure

can be executed only one time during the “learning” pro-

cess which is realized by operator at the beginning. For ev-

ery frame (image), the adjusted parameters are saved in a

special memory and during testing they are treated as a pri-

ori information about the analysed image.

6. Results and conclusions

The proposed algorithm has been tested in the task of the

automated optical inspection system on the printed circuits

boards assembly line. The frames (images) were acquired

by camera SONY DFW-V500 with resolution 640´480
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Fig. 4. Illustration of the peak climbing approach in two-dimen-

sional space.

Fig. 5. The graph of the interpolated multi-resolution density for the different number of grids and minimal cuboid size (for z = 85)

a) 1 grid, minimal cuboid’s size: 23´23´23 b) 4 grids, minimal cuboid’s size: 23´23´23 c)1 grid, minimal cuboid’s size: 25´25´25.



pixels. The upper limit of the time processing for the seg-

mentation process per one frame was 0.07 s. The algorithm

was implemented on the processor AMD ATHLON 1.5

GHz. The tests revealed that the proposed algorithm was

able to segment images in the time about 0.05 s. A few re-

sult images from this process are presented in Fig. 6.

The proposed algorithm minimizes the following limi-

tations met very often in the colour image segmentation:

• need of specifications of some a priori knowledge about

the analysed image or other parameters which control

the segmentation process,

• slowness due to extensive computations required,

• invariance to changes of the light.

Segmented image makes possible easy and simple con-

tour’s definition that represents boundary between dissimi-

lar regions in the image what is the basis for the vectoral

imaging approach.
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Fig. 6 Segmentation results obtained for images analyzed in the tasks of the automated optical inspection on the printed circuits boards

(PCB) assembly line.


