
Information theory based medical images processing

K. KUCZYÑSKI* and P. MIKO£AJCZAK

Laboratory of Information Technology, University of Maria Curie-Sk³odowska,
5 Curie-Sk³odowskiej Sq., 20-031 Lublin, Poland

Increasing application of non-invasive medical techniques (like stereotactic radiosurgery) generates a high demand for mod-

ern image processing algorithms. Image registration and segmentation are the two essential examples of this. The algorithms

need to be reasonably fast, reliable, accurate, and highly automated. Information theory provides a means to create such sys-

tems. In this paper we present thresholding segmentation using image entropy and a registration technique based on maximi-

zation of mutual information. Then we show some experimental results using real-world computed tomography (CT) and

medical resonance imaging (MRI) data.
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1. Introduction

There is a rich variety of available medical imaging tech-
niques (CT, MRI, PET, SPECT, USG, …). Their quality is
improving continuously. Growing popularity of non-inva-
sive therapeutic techniques, like stereotactic radiosurgery,
based mainly on image diagnostic data causes a high de-
mand for image processing algorithms. These should be
highly automated, fast and reliable in order to make a pro-
found use of the acquired data.

Despite their excellence, various imaging techniques
provide different and often complementary kinds of infor-
mation about physical properties of tissues, so all of them
are required. In case of brain imaging it is common to ac-
quire both CT and MRI scans. CT provides precise ana-
tomical information, especially about bones. Voxel intensi-
ties are proportional to the radiation absorption of the un-
derlying tissues, which is particularly valuable in radiation
therapy planning. MRI is less accurate, but soft tissue (in-
cluding tumour) delineation is significantly enhanced.
However, interpretation of the visualized parameters
(spin-lattice relaxation time T1, spin-spin relaxation time
T2, spin density r; Table 1, Ref. 1) is not as straightforward
as in CT.

The task of integrating two datasets is not trivial due to
non-similar patient’s spatial orientation, different resolu-
tions and voxel intensity profiles. The goal of a registration
(matching, alignment) process is, given two images of the
same object, to find a spatial transformation T that relates
them. The next step is a fusion of the registered datasets.

Another crucial technique is image segmentation,
which is a process of partitioning an image into regions ho-
mogenous with respect to a given criterion. It is often the

first step in image processing, visualization and analysis.
The review and classification of segmentation methods can
be found in Ref. 2.

The tasks of registration and segmentation are closely
related. Segmented images are easier to register. On the
other hand, having two registered images, better segmenta-
tion can be obtained. Here, we present an approach to regi-
stration and segmentation based on elements of informa-
tion theory.

2. General theory

Application of information theory methods in image pro-
cessing is possible, assuming that we can treat images as
random variables. In this chapter, a theoretical background
of the implemented registration and segmentation proce-
dures is presented [3,4].
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Table 1. Range of T1, T2, and r values at 1.5 T magnetic field for
tissues found in a magnetic resonance image of the human

head (after Ref. 1).

Tissue T1 [s] T2 [ms] r*

CSF 0.8–20 110–2000 70–230

White 0.76–1.08 61–100 70–90

Grey 1.09–2.15 61–109 85–125

Meninges 0.5–2.2 50–165 5–44

Muscle 0.95–1.82 20–67 45–90

Adipose 0.2–0.75 53–94 50–100

*Based on r =111 for 12 mM aqueous NiCl2.



The most frequently used measure of information is the
Shannon-Wiener entropy measure. The entropy H of a dis-
crete random variable X with the values in the set
{x1,x2,…..xn} is defined as
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where pi = Pr[X =xi].
The entropy definition of a single random variable can

be extended to a pair of random variables. The joint en-
tropy H(X,Y) of a pair of discrete random variables with a
joint distribution pij is
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The conditional entropy H(Y|X) is defined as
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where pj|i = Pr[Y = yj|X = xi].
Mutual information between two discrete random vari-

ables X and Y is defined as

I X Y p
p

p p
ij

j

m

i

n
ij

i j

( , ) log=
==
åå

11

. (4)
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The mutual information represents the amount of infor-
mation that one random variable gives about the other ran-
dom variable, or in other words a measure of the reduction
in the entropy of one variable, given the other variable.
Normalised mutual information [5] is defined as
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The image entropy, Eq. (1), is usually estimated using a
histogram [6]

p
g

g
i

i

total

º , (7)

where gi is the number of pixels with the intensity i and gto-

tal is the total number of pixels while n in Eq. (1), is the
number of grey-levels. However, this approach has a sig-
nificant drawback: the pixels are assumed to be independ-
ent and the spatial information is ignored. Random rear-
rangement does not affect the entropy, which is coun-
ter-intuitive.

Table 2 shows three images. Their histograms are identi-
cal so, the histogram entropies H1, H2, and H3 are equal, too.

Another approach, often referred as a “monkey model”,
assumes an image to be made up of a fixed number of pho-
tons (unit grey-levels) G randomly allocated in n cells (pix-
els, Fig. 1) [7]. Here the entropy calculation [Eq. (1)] is
used over again, but

p
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where gi is the grey-level of the pixel i.
In this case, the spatial information is still ignored, like

in the previous model. However, if we use a modified form
of Eq. (1) [8]
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Table 2. Image entropy calculation – examples.

H1 = 3.17 H2 = 3.17 H3 = 3.17

Hs1 = 13.6 Hs2 = 17.6 Hs3 = 19.4
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where m is the model based measure defined over the same
domain as p, it can be used to incorporate dependence be-
tween pixels, for example [7]
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s i
2 is a grey-level variance over the 3´3 neighbourhood N3

of the pixel i and mN3
is the mean grey-level in N3. It is ap-

plied in order to emphasize the image’s features, relevant

for the understanding of the image by a human (contours,

homogenous areas, etc.). The more variable image, the

greater the variance so, it appears to be one sensible

choices.

The last row of Table 2 presents entropy calculation re-
sults using the above model. The more random the image,
the higher the entropy (Hs1< Hs2 <Hs3).

3. Mutual information based image registration

Registration methods can be classified with respect to
many criteria [9]. The most general classification distin-
guishes feature-based and voxel-based techniques. In the
first case, some corresponding points (either external artifi-
cial markers or anatomical structures localised by an ex-
pert) need to be recognized prior to the registration, then
the spatial distances between them are to be minimized. In
voxel-based techniques a similarity measure between two

images is computed with the intensities of all (or most of)
voxels in the images. Neither segmentation nor special
pre-processing is required. The last approach is becoming
more and more popular, however it requires more process-
ing time.

Regardless of the method used, the registration frame-
work is always similar (Fig. 2, Ref. 10). In order to register
two images, a geometrical transformation needs to be im-
plemented. There is a wide class of local and global trans-
formations (rigid, affine, projective, curved) that can be
used [9]. An affine 3D transformation can be easily de-
scribed using a single constant 4´4 matrix. The rigid body
transformation implemented in our program is defined as

where Tx, Ty, Tz, Rx, Ry, and Rz are the transformation pa-
rameters.

The joint entropy could be used as a similarity measure
between two images. It is convenient to employ a
2-dimensional greyscale histogram (scatter-plot) for this
purpose. Figure 3 shows two pairs of images and their his-
tograms.
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Fig. 1. “Monkey model” of a 1-dimensional image (after Ref. 7).

Fig. 2. Optimisation framework.
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Fig. 3. Two pairs of images and their 2-dimensional histograms.



The joint entropy for these images is calculated as
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The more similar two images are, the lower is their
joint entropy. However, its optimisation may lead to incor-
rect solutions when the images do not overlap entirely dur-
ing a registration process. Mutual information is a signifi-
cantly better candidate for a registration criterion. It can be
proved that two images are properly matched when their
mutual information is maximal [11].

In order to find the optimal transformation parameters,
an optimisation procedure is used to search for a global op-
timum (minimum or maximum, depending on convention)
of the registration criterion (similarity measure). A review
of the most often used methods can be found in Ref. 9.
Non-deterministic algorithms (e.g., simulated annealing)
are successful in many real-world tasks, including registra-
tion. However, they typically require much computing
time. Deterministic ones (Powell, Davidon-Fletcher-
Powell, Levenberg-Marquardt, etc., Ref. 12]) are faster, but
they fail in the presence of a large number of local extrema.
To address this problem and to speed up the convergence,
multi-scale or sub-sampling techniques are utilised [13].
Also, a few different start points may be randomly selected.

4. Entropic thresholding

Thresholding pixel (or voxel in 3-dimensional images) in-
tensity values method is the simplest and the most com-
monly applied segmentation one. It can be performed either
globally (for example using the intensity-scale histogram
of the image) or locally (by selecting thresholds separately
for each sub-image). The partition is defined as [6]
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i(r,c) is the grey-scale image, j(r,c) is the resulting binary
image, and t is the threshold to be found. In this way we
obtain two classes of pixels: “black” b0 and “white” b1.

According to Ref. 14 we assume, that “the entropy of
each region is always lower than entropy of the whole im-
age or, in other words, the entropy of a region is always
greater than the entropy of its subdomains”. For the two
classes of pixels (b0 and b1) in an 8-bit greyscale source im-
age we can calculate entropies as [6]
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The entropies H b0
and H b1

may be analogically calcu-

lated using Eq. (9) by including spatial information. The

segmentation criterion may be calculated in numerous

ways. The two examples are [15,16]

t H t H tb b= +argmax( ( ) ( ))
0 1

, (18)

or

t H t H tb b= +argmin( ( ) ( ))
0 1

2 . (19)

Multi-class segmentation is performed by iterative seg-
mentation of classes resulting from previous steps.

5. Experimental results

Figure 4 shows the images (CT and MRI of the same pa-
tient) to be registered. Figures 5 and 6 present the registra-
tion result. The images have been registered by maximiza-
tion of mutual information using the Powell’s optimisation
algorithm [12] with sub-sampling and multiple start points.
Despite the simplicity of the Powell’s method, in the case
of typical datasets it led to acceptable results. The transfor-
mation parameters are: Tx = 65.0 mm, Ty = 59.5 mm, Tz =
5.9 mm, Rx = 17.8°, Ry = 1.4°, and Rz = 7.4°.

Figures 7 and 8 show 2-dimensional histograms of the
images, before and after the registration process. The prob-
lem of local extrema is visualised in Fig. 9 (mutual infor-
mation as a function of two transformation parameters,
while the others have been set in the optimum). The global
maximum corresponds to the best possible registration.

Information theory based medical images processing

256 Opto-Electron. Rev, 11, no. 3, 2003 © 2003 COSiW SEP, Warsaw

Fig. 4. Source datasets.



Figure 10 shows a result of a CT image entropy seg-
mentation using spatial information. The optimal value of
the threshold corresponds to the maximum of the criterion
[Eq. (18), Fig. 11]. One of the resulting classes has been
segmented over again in order to obtain three classes
(background, soft tissues and bones).

6. Conclusions

Novel, sophisticated medical routines require new ad-
vanced image processing techniques. Information theory
provides means to create highly automated systems. In
most cases, there is no need of pre-processing or expert as-
sistance. Computational complexity and occurrence of lo-
cal extrema are still important concerns, however on a
modern PC it is possible to achieve satisfactory results
within a reasonable time.
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Fig. 5. Optimisation result.

Fig. 6. Optimisation result – a checkerboard test.

Fig. 7. Histogram of the source images.
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Fig. 8. Histogram of the registered images.

Fig. 9. Mutual information as a function of two of the transformation parameters.
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Fig. 10. CT image segmentation.

Fig. 11. Optimisation criterion [Eq. (18)] as a function of threshold.


