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General idea of the super-resolution method based on the signal-spectrum extrapolation beyond transmission-channel band

has been presented. Main limitations of former realizations of the method have been discussed. A new realization procedure

of the method, removing those limitations, has been proposed. It consists in signal fragmentation before transmission

through a low-pass channel. Results of a few numerical experiments done by means of original computing tools has been

presented and discussed.
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A lot of super-resolution methods of signal restoration have

been proposed [1]. The approach presented in this paper

belongs to the methods which allow improving resolution

of signal by recovering spectrum beyond available band.

Within the confines of this approach, restoration of diffrac-

tion-limited signal by means of spectrum extrapolation is

known. Harris [2] showed that there are not two different

objects of finite size with the same Fourier spectrum.

Therefore, he concluded that object details could be re-

stored by variety of techniques. Barnes [3] proposed the

method of object restoration in one-dimensional, diffrac-

tion-limited imaging system. Extension of the method to

two-dimensional, diffraction-limited imaging system has

been presented by Frieden [4]. He described the method of

spectrum extrapolation based on a set of prolate spheroidal

wave functions [5,6]. Finally, Rusforth and Harris [7] con-

sidered the method in the presence of noise. They showed

also some limitations of this method. Mathematical and

physical background of super-resolution relating to digital

images has been presented in Ref. 8, whereas the details of

the methodology of computing spheroidal wave functions

have been shown in Ref. 9. Bertero and De Mol [1] ana-

lysed all known super-resolution methods and concluded

that super-resolution, in the sense of out-of-band extrapola-

tion, is feasible only in the case where the size of objects is

not too large in comparison with the resolution limit of the

imaging system. This property significantly limits practical

applications of the method. The main aim of this paper is to

propose the method removing this limitation, and to give

computing tools for practical realization of the method.
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In the classical approach, band-limited transmission chan-

nel results in limited resolution of the transmitted signal.

Out-of-band extrapolation of the signal spectrum without

additional information is impossible. Cutting the signal do-

main before the band-limited transmission is the main idea

of the super-resolution methods. It generates additional in-

formation in the transmitted band. That information is nec-

essary for out-of-band spectrum extrapolation.

In Fig. 1, two similar signals of only one frequency �0,

higher then the cut-off frequency �/2 of the band-limited

transmission channel, are presented. The first one has un-

limited domain, whereas the second one has T-limited do-

main. Respective spectra of the signals are shown on the

right-hand side of Fig. 1. The spectrum of the unlim-
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Fig. 1. The �0-frequency signal (left) of unlimited (top) and

T-limited (bottom) domain, and its spectrums (right); dark field

denotes frequencies filtered by the transmission channel with

cut-off frequency �/2.



ited-domain signal is represented by the Dirac delta func-

tion, whereas the spectrum of the limited-domain signal

takes infinite band. After band-limited transmission pro-

cess, the first signal is completely filtered, whereas the sec-

ond one contains some information which can be used to

extrapolate spectrum beyond the cut-off frequency.
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Extrapolation of the spectrum for frequencies removed by

transmission channel is used in the process of signal resto-

ration. Prolate spheroidal wave functions �i [5,6] used in

this process are eigenfunctions of the following equation

BD� �i i i� � , (1)

where D is an operator limiting the signal domain, B is an

operator limiting the spectrum domain, and �i is a respec-

tive eigenvalue.

Important property (called double-orthogonality) of the

functions �i is described by two following equations
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where �/2 is the cut-off frequency of transmission channel

represented by the operator B.

On the basis of the property described by Eq. (2), the

spectrum F(�) of domain-limited signal Df(t) can be ex-

trapolated according to the following equation
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where c = T�/2 is the size-bandwidth product, T is the size

of signal domain and �/2 is the cut-off frequency of trans-

mission channel. Index c in � i
c denotes the set of

eigenfunctions of Eq. (1) for the parameter c. The coeffi-

cients ai can be determined from the known (passed by

transmission channel) part BF(�) of a signal spectrum. On

the basis of the property described by Eq. (3), ai can be de-

termined in the following way
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The coefficient ai has the sense of the level of participa-

tion of � i
c ( )� in the spectrum F(�). The eigenvalues �i

are responsible for normalization of� i
c ( )� in the transmit-

ted band. Figure 2 shows the monotonously ordered eigen-

values �i for c = 40. For such an ordering, the eigenvalues

�i are approximately equal to 1 if i < S, and they rapidly

decrease if i > S, where S = 2c/� and it is called the Shan-

non number [10]. In communication theory, this is a num-

ber of sampling points spaced by the Nyquist distance

R = 2�/� and it is interpreted as the structural information

amount contained in a domain-limited signal transmitted by

a band-limited channel with the cut-off frequency �/2. The

functions �i of i < S can almost completely restore of the

spectrum in the transmitted band. The functions �i of i > S

allow us to extrapolate the spectrum beyond the cut-off fre-

quency. Plots of four functions �i in the neighbourhood of

the Shannon number are presented in Fig. 3.

�� ���
� ���	�	����������	�

The process of spectrum extrapolation is realized according

to Eq. (4). Infinity as the upper limit of the sum in this

equation guarantees complete reconstruction of the spec-

trum. In practical realization of the method, infinity has to

be replaced there by the finite value N
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where N + 1 is the number of the functions �i which allows

us to extrapolate the spectrum up to some frequency value

�’/2. In this case reconstruction is not complete although

improvement in signal resolution should occur. This is pos-

sible due to properties of the function �i. The functions

with the lower index have more band-limited spectrum

than the functions with the higher index. The eigen-

functions �i ordered form the lowest to highest index i ac-

cording to decrease in the value �i are used in Eq. (6).

Therefore more the functions �i used in Eq. (6) (greater N)

results in extrapolation up to the higher frequency �’/2.
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Fig. 2. The monotonously ordered dependence of the eigenvalues

�i in semi-logarithmic scale for c = 40; S is the Shannon number.



The value N = S allows us to extrapolate the spectrum

with � = 1, where � = �’/� and it denotes the extrapola-

tion ratio. In this case, signal improvement cannot be

achieved. Out-of-band extrapolation of the spectrum takes

place when N is greater then S. The following equation can

be used to determine the number N for the desired value of

�’/2

N
T

�

�

�
. (7)

On the other hand, the main limitation in the out-of-band

extrapolation is the noise to signal ratio �/E. The energy

part of �i located in the filtered signal is represented by the

square root of the eigenvalue �i. The energy of information

used for the extrapolation should be greater then the noise

energy. For this reason, the following condition should be

kept [11]
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The greatest index i for which Eq. (8) is yet satisfied

can be used as the number N. Then, in the presence of

noise, the extrapolation limit �’/2 can be determined from

Eq. (7) for such the number N.

As it results from the previous investigation [7], no sig-

nificant improvement in signal resolution can be achieved

when the size-bandwidth product c is too large. This fact

can be concluded form behaviour of the prolate spheroidal

wave functions. In order to ensure the desired sig-

nal-resolution improvement independently of its domain

size T, the signal can be divided before transmission into

small parts of the domain size T’ < T to have the optimal

parameter c for extrapolation process. Figure 4 shows the

diagram of the signal restoration process according to the

mentioned idea of signal fragmentation.
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Fig. 3. Plots of four eigenfunctions�i
c( )� in the neighbourhood of the Shannon number for c = 40.

Fig. 4. Diagram of the signal-restoration process by means of signal fragmentation.



Practical realization of the method needs to compute the

functions �i. The prolate spheroidal wave functions

S0,i(c,�) are applied here in the following way [6]
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Computation of the coefficients ai end extrapolation of

the spectrum is realized numerically according to the fol-

lowing equations
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where L is the number of samples taken in discretisation

process of the transmitted spectrum band. The following

steps should be done in order to realize the presented

method:

• determine cut-off frequency �/2 of the transmission

channel.

• determine desired frequency �’/2

• chose the value of parameter c

• compute the size of the signal fragment, T’ = 2c/�
• determine the value N from Eq. (7)

• determine the noise to signal ratio

• verify condition of Eq. (8)

• divide the signal into fragments of size T’

• transmit signal fragments

• compute the function values�
�

i
c j

L

�
��

�
��

for i = 0, 1,..., N

and j = 1, 2,..., �L

• analyse and extrapolate the spectrum of transmitted

fragments according Eqs. (10) and (11).
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A numerical model has been built to verify the proposed

super-resolution method based on signal fragmentation.

This model has been implemented in the Matlab 6.0 envi-

ronment. Original procedures for computing the functions

�i have been also built and used. The original signal frag-

ment f(t) used in the experiment is shown in Fig. 5. This

signal consists of two harmonics but only one harmonic

can pass through the transmission channel. The higher fre-

quency in the signal is 18% greater then the cut-off fre-

quency �/2 of the transmission channel. Therefore the

method should ensure the extrapolation ratio � = 1.18. The

other parameters have been assumed as follows: c = 40 and

N = 33. Consequently, the parameter c and the cut-off fre-

quency determine the domain size T’ of the signal part re-

sulting from the fragmentation process. The spectrum of

such a signal part is presented in Fig. 6. Dark field there de-

notes the frequencies filtered by the transmission channel.

If the original signal is transmitted through the channel,

the output signal takes the form presented in Fig. 7. As it

can be seen, the higher frequency has been filtered. If the

same signal is processed according to the proposed method,

described by the diagram in Fig. 4, the output signal takes

the form shown in Fig. 8.

A super-resolution method based on signal fragmentation
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Fig. 5. Signal fragment f(t) used in experiment.

Fig. 6. Spectrum of a signal fragment; dark field denotes the filtered

frequencies.

Fig. 7. The output signal for the original signal fragment

transmitted through the low-pass channel.



An example of restoration of more complex one-dimen-

sional signal is presented in Fig. 9.

Restoration of an image as two-dimensional signal is il-

lustrated in Fig. 10.

The above presented examples of signal restoration

were carried without any optimisation. Better results can be

obtained by optimising the set of parameter values, more

detailed digitalisation of the original signal, and higher

computing precision.

"� #	�
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The proposed realization of the super-resolution method al-

lows us to restore signals beyond the Rayleigh resolution

limit. The result is independent of the size-bandwidth prod-

uct. It can be applied to one-dimensional signal like sound

and two-dimensional one like image as well. Further re-

search should be focused on optimising the parameter val-

ues for the realization method.

An optimisation criterion can be represented by mea-

sure of correlation of original and restored signals. Finding

parameter values for which the measure reaches maximum

could be the aim of optimisation. This goal can be achieved

on analytical way as well as numerical simulations.
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Fig. 8. Signal fragment
~
( )f t restored by means of the proposed

method.

Fig. 9. The signal after transmission through a low-pass channel (top plot) and the restored signal (bottom plot) are compared with the

original signal (dotted lines).

Fig. 10. An example of image restoration. Original, transmitted and

restored images are shown at left, middle and right part,

respectively.
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