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Standard Hermite-Gaussian and standard Laguerre-Gaussian diagonal beams can be expressed by similar summation of
non-diagonal standard Hermite-Gaussian beams with expansion coefficients that are equal in magnitude in both cases. We
show theoretically and numerically that the same relations hold also for elegant Hermite-Gaussian beams and elegant
Laguerre-Gaussian beams. On the other hand, our theoretical estimations and numerical simulations show substantial dif-
ferences between standard and elegant beams in their phase transverse distribution and evolution of this distribution during

beam propagation.
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1. Introduction

Hermite-Gaussian (HG) and Laguerre-Gaussian (LG)
beams are higher order solutions of the paraxial wave equa-
tion with rectangular and cylindrical symmetry about their
axes of propagation, respectively. They are widely used in
the theory of laser beams and resonators [1,2]. When argu-
ments in Hermite or Laguerre parts of these beam fields are
real and arguments in Gaussian parts are complex, they are
named Standard Hermite-Gaussian (SHG) or Standard
Laguerre-Gaussian (SLG) beams. Siegman found more
symmetric solutions where both arguments in the Gaussian
and the Hermite (Laguerre) parts are the same complex
quantity, and he named them Elegant Hermite-Gaussian
(EHG) and Elegant Laguerre-Gaussian (ELG) beams [2,3].
After Siegman's work, Pratesi and Ronchi derived a more
general complex Gaussian solution that can be reduced to
SHG or EHG beams [4]. Elegant and standard HG and LG
beams exhibit several different features during propaga-
tion. For example, EHG beams have no spherical wave-
fronts, have no zeroes outside their waists for odd orders of
Hermite functions, are much more concentrated around the
beam axis in near field and their outermost side-lobes be-
come strongly emphasised in far field [2,5].

The SHG and SLG beams form complete sets in the
space of square-integrable complex functions. Any finite
power beam solution of the paraxial wave equation can be
decomposed in these bases. That means that also the SLG
beams can be expressed by series of the SHG beams and
vice-versa. In particular, a diagonal SHG beam, that is the
three-dimensional (3D) beam symmetry axes of which, say
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x"and y’ axes, make an angle of 7/4 with respect to the as-
sumed coordinate axes x and y of an optical system, can be
expressed by summation of non-diagonal SHG beams, that
is the SHG beams factored out into two-dimensional (2D)
HG beams along the x and y axes, respectively. Almost the
same expansion is valid for SLG beams, except additional
factors of —i present in coefficients of this expansion [6,7].
For example, a diagonal SHG,; beam can be expressed as

SHG 1 (v, y",2") = 2 V2 [SHG 1 (x,,2)
+SHG01(X,_)7, Z)] o< X 'G(X,y, Z)a

where G(x,y,z) is a fundamental Gaussian mode,
X = (x+y)A2 and y’' = (x — y)A/2. Similarly a SLG; beam
is given by

SHG o, (r,@,2) = 2~V [SHG 4 (x,y,2)
+SHG 1 (x, y, 2)] o< x"G(x, y, 2),

where x" = (x + iy)/ﬁ = r exp(+p) and y” = (x — iy)/
2 =7 exp(—i¢g). The diagonal x" and y’ coordinates are ob-
tained by rotation of the (non-diagonal) x and y axes through
the real angle 7/4 whereas the circular (or imaginary diagonal)
x" and y" coordinates may by understood as given by rotation
of the x and y axes through the imaginary angle /4. The ele-
gant and standard beams of first two orders (n, m = 0,1) are
indistinguishable from each other [2,5]. In the case of the
first-order Hermite-Gaussian beams, for example, they corre-
spond to a product of Gaussian function with one coordinate
variable: x or y. Consequently, the two previous relations
given for standard beams remain also valid for elegant beams
of these two first orders. In fact, as we will show in this com-
munication, these relations still remain valid for EHG and
ELG beams of any order.
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The above formulas are not only nice and compact
mathematical expressions but also of, both theoretical and
experimental, important physical consequences. In 1992,
Allen and coworkers have shown that a SLG beam posses
well-defined orbital angular momentum [7]. It causes nota-
bly mechanical effects, like rotation, already presented in
experiments with optical spanners. Its interaction with mat-
ter is also involved in other phenomena, like the second —
harmonic generation in non-linear optics [8]. Therefore,
studies on properties of the SLG beams, their generation,
propagation, and various applications are of great impor-
tance. Many aspects of these phenomena need further ex-
planation and are recently under active research. As Allen
et al. pointed out: “It would be appear that all light beams
which possess field gradients, and which are not therefore
planes waves, will possess a measure of orbital angular
momentum. Indeed a badly phased transformation between
transverse laser amplitude distributions will in general lead
to ill-defined orbital angular momentum. For this reason it
is important that stable, nondegenerate, propagating
Laguerre-Gaussian polynomial modes are created and en-
tirely transformed. A meaningful measurement of orbital
angular momentum will not otherwise result” [7].

The formulas similar to these outlined above permit one
to produce astigmatic optical systems in order to convert
(standard) Laguerre-Gaussian modes to (standard)
Hermite-Gaussian modes or vice versa. That explains im-
portance of such expressions. On the other hand, elegant
beams have not been studied deeply and employed in this
way yet. However, it is already known that they posses
very interesting properties. For example, it has been shown
that elegant beams possess a better M2 beam propagation
factor than this of standard beams [5,9]. For this reason ele-
gant beams may appear to be more useful than standard
beams in many future applications.

The paper is decomposed into three parts. First, we in-
troduce basic notation and definitions for beams under con-
sideration. Next, we recall known diagonal relations for
standard beams, and give corresponding new relations for
elegant beams. We also verify these relations numerically
in several planes transverse to a propagation direction. De-
tailed analytic derivation of these relations are given in an
appendix. Finally, we also show that differences in field
phase distributions between two types of beams exist and
that they are substantial.

2. Basic definitions

We consider time-harmonic beam fields propagating
along the z-axis. A phase factor exp(i(kz — wt)) is assumed
and suppressed henceforth in all beam field expressions.
The reduced coordinates: X = x/wgy, y = y/wq, T = 1/wy,
7 = z/zy, are used, where wy and z( = kw(z) 2 are the
characteristic width and characteristic (diffraction) length
of a Gaussian beam, respectively. In these coordinates, the
SHG and EHG beams are solutions of the 3D paraxial
wave equation
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((9}52 + ? +4i a}]!//(x,y,z) =0. (1)

They are given in a form of the product of two 2D solutions

in the two mutually orthogonal planes (¥,Z) and (¥,%), re-
spectively:

« O\ n+m
_n+m 2 =
W;EZG(E%’ZN) ’ Vn'm'ﬂ[vlf(Z;) ]
o )

an( 2 JHH [Iy ]G()? 5.3),

w(Z) (@

P e ) 1 n+m
Yom (*,5,2) = 2 1o =
n.m!mw U(Z) (3)
X y o
XH(v(%))H ( oE ))G(x 72

where H , (¥) and H ,,(¥) are Hermite polynomials of order
n and m in X and y directions, respectively, and the symbol

“*” denotes complex conjugate.

The real beam radius w (Z), complex beam radius v (2),
Guoy phase {(7) and the fundamental Gaussian beam
G(X,y,7) are defined as

w(@) = V1+32, )
v(@) = 1 +7Z, ©)
{(Z) = arctan(?), (6)
657 = v 2 @e T, @)

Note that both HG beams are normalized in power, their
field amplitudes are equal at their waist centers. Both beams
are uniquely determined by magnitudes of the rectangular
coordinates and the complex radius v (Z) of the beams.

Counterparts of the Hermite-Gaussian beams, these
with cylindrical symmetry in beam-field intensity, are the
standard SLG and elegant ELG Laguerre-Gaussian beams.
They are solutions of the paraxial wave equation in the cy-
lindrical coordinates (7, ,7)

19(.d 1 92 P
— |+ ———+4i—|D
(r ar[ 3r)+ 2 997 l&"] Fe5=0 &

where @ denotes an azimuthal angle in the plane (X,5)
transverse to the propagation direction. In the notation of
Beijersbergen et al. [10] the SLG and ELG beams can be
written as

O3 (7 p7)=

i\
s

( l)mm(nm)mm(nm){ v(Z) ]
&)

u(Z)
n-m [ 277
Lmin(n,m) 2
w

JG(;?, 3, 5)e (1=
(2)
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respectively, where thﬁr:'(ﬂn,m) are the generalized Laguerre
polynomials. The indices n and m are related to the usual
radial p and azimuthal / indices by the relations:
p = min(n,m) and [ = In — ml [10]. The LG beams are also
normalized in power, their field amplitudes are equal at
their waist centers and are uniquely determined by magni-
tudes of the cylindrical coordinates and the complex radius
v(Z) of the beams.

Figures 1 and 2 represent the transverse intensity distribu-
tion of the SHG, SLG, EHG and ELG beam fields in one
transverse dimension at the beam waist (Z = 0). In spite of the
visible analytic similarity between standard and elegant
beams, they behave differently due to the complex argument
in elegant beams expressions: for example, EHG and ELG
beams exhibit changes of shape during the propagation and
they do not have spherical wavefronts. Comparisons between
elegant and standard beams by use of different criteria, like,
for example, the quality factor or the kurtosis parameter, have
already been done by several authors [5,11,12].
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Fig. 1. Intensity of the fundamental n = 0, first-order n = 1 and
second-order n = 2 SHG and EHG beams versus the reduced
coordinate X for different values of n at the beam waist (Z = 0).
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Fig. 2. Intensity of SLG and ELG beams as a function of the

reduced 7 coordinate for different values of / and for p = 2 at the
beam waist (Z = 0).

3. Diagonal relations between beam fields

It has been previously shown [6,7,10] that the diagonal —
SHG beam, that is the SHG beam rotated by an angle of
7/4 from its cartesian reference coordinates X and y, can be
expressed by a summation of non-rotated SHG beams,
where successive components of this summation are in
phase. Similarly, the SLG beam can be decomposed into a
sum a non-rotated SHG beams, where the summation com-
ponents of the same magnitude are augmented by addi-
tional —7/2 phase factors

SHG _~ 52' +y n+m s
anm 72’f z Zb(l’l m,k) n+m—k,k(x y.2), (1)
n+m
<DSLG (F.0.7) = Z( —)*b(n, m k¥ n+m_kJ< (x,5,2). (12)
k=0
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Real coefficients in these expansions

n+m—k)lk!

2 n+m

b(n,mk) = (2% P00y, (13)

n!'m!
are expressed by the Jacobi polynomials [6]

k
Py = C e pH

2k

dk k+v k+u
xd[—k[(l—t) A +1) ]

(14)

A graphical illustration of these formulas is given in Fig. 3,
where transverse cross-sections of the second order beams
with n = 2 and m = 0 are drawn at the beam waists.

Comparing the expansions in Egs. 11 and 12 we can see
that except the factor (=i)* their coefficients are equal. The
factor (—i)* corresponds physically to an additional change
of phase —km/2 for each integer k. Compensation of this
phase by Guoy phase {(Z) of an astigmatic HG beam, that
is the beam with different diffraction lengths zy, and zg,
with respect to its symmetry axes x and y, respectively,
leads to mode conversion between the incoming SHG
beam and the outgoing SLG beam or, inversely, between
the incoming SLG beam and the outgoing SHG beam.
Moreover, contrary to the SHG beams, the SLG beams
possess an angular momentum of magnitude /% per photon,
where | = n — m stands for the azimuthal index of SLG
beam. Thus the transformation of the SHG beam into the
SLG beam or vice-versa causes the beam field to exert a
torque on the converter. This type of mode converter, that
is the /2 — converter, has been discussed in deep by sev-
eral authors [6,7,10].

Zauderer and Takenaka et al. have obtained some rela-
tions between EHG and ELG beams [13,14] in their ana-
lyzes of beam fields beyond the paraxial approximation;

’, _

055 (7o) = 5037 (2,9) + U (2,9) —

see, for example, a formula (31) in Ref. [14]. To our best
knowledge, diagonal relations for elegant beams, parallel to
the equations (11) and (12) for standard beams, have not
been given as yet. However it is directly proved in Appen-
dix that identical diagonal relations really hold also for ele-
gant beams

5 Ry ) EHG (= o
,{,EHG[”’X’Z) =) bn,m k¥ I (X,5,%), (15)
Pl \/E \/5 kgo n+m—kj XY
n+m
k=0

Therefore, the diagonal expansions of the standard (eq. 11
and eq. 12) and elegant (eq. 15 and eq. 16) HG or LG
beams possess exactly the same expansion coefficients. In
Fig. 4 a graphical representation of the formulas (15) and
(16) is drawn at the waist of beams.

Since the shape of elegant beams changes during their
propagation, it is not obvious from first sight that the diag-
onal relations for elegant beams remain valid when the
propagation distance Z from the beam waist varies. There-
fore, we have verified in addition numerically that the
equations (15) and (16) were really valid even when 7 # 0.
The case where Z = 1 was considered as an example. We
have computed the right hand-side of Eqs. 15 and 16 and
compared the outcome with the definition of the left-hand
part of these equations. Eq. 15 and eq. 16 remain valid in
this case as expected. The cases of n = 2 and m = 0 for
EHG and ELG are represented Fig. 5.

For better visualization, we have represented in Fig. 6
transverse one dimensional (1D) cross-sections of the
beams in the cases drawn previously in Figs. 4(a) and 5(a).
Moreover, we have also used Mathematica in order to
check analytically Eqs. 11-12 and 15-16 for various n, m
and Z. We observed that the above relations appeared to be

i
e

l .. 1
- )

e

(b)

Fig. 3. Decomposition of the SHG ‘I’ZSJI G and the SLG QD%G diagonal beam fields in terms of the SHG beam fields in the transverse plane
at the beam waist (Z = 0).
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Fig. 4. Decomposition of the EHG ‘PSH G and the ELG @

diagonal beam fields into a summation of EHG beams in the transverse plane
at (Z =0) (in the beam waist)
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Fig. 5. Decomposition of the EHG ‘I’EH G

and the ELG @5 ELG diagonal beam fields in terms of EHG beams in the transverse plane at (Z = 1)
(outside the beam waist).
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Fig. 6. 1D cross-section (y = 0) of the decomposition of the EHG beam ¥, at its waist (for (Z = 0) and outside its waist (for Z = 1). The
coordinate crosses correspond to the function f{x)
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Fig. 7. Graphical representation of Eq. (11) and Eq. (15) of the beam field distribution at 7 = 1, comparison of SHG and EHG beams by their
1D cross-sections at ¥ = 0. The coordinate crosses represents the function f(x) = 0.

valid whatever values of n, m and 7 may be. Finally, we en-
close in Fig. 7 one example of comparison between the
transverse shapes of field distributions of standard and ele-
gant beams. The drawing indicates that the diagonal rela-
tions derived may have serious consequences of use of the
elegant HG and LG beams in optical applications.

SLG and ELG beams share many common characteris-
tics, one important example of them has been shown above
by Eqgs. (15) and (16). However, these beams exhibit also
substantial differences, especially in their transverse field
distribution and this field distribution changes in the course
of beam propagation. Phase aspects of these differences
will be briefly discussed in the next section.

4. Transverse distribution of beam field phase

A few papers have been published recently in which differ-
ences between standard and elegant Laguerre beams were
discussed. Only intensity of beams has been considered in
deep [5,9,11,12]. Therefore, we present here some further
numerical results, pertaining phase distribution of beams
and changes of this distribution during beam propagation.
In Figs. 8 and 9, we draw the phase transverse distribu-
tion of SLG and ELG beams. These figures show differ-
ences in beam phase distribution that appear to be present
during the beam propagation from the beam waist plane
(Z = 0), through the Fresnel region, until the far-field range
(Z = 104). Different values of the beam orders n
(n=2and n=>5)and m (m =1 and m = 2) are considered. At
first sight it may be surprising to observe that differences in
phase distributions at their waists exist — at the waist SLG
and ELG beam fields are purely real. However the jump
which is observed for the beam field phase equals only 7,
that means that it only reverses signs of beam field ampli-
tudes. Location of these phase discontinuities depend only
on positions of zeroes of the Laguerre functions used in the
description of the SLG and ELG beams. These zeroes are lo-
cated at different transverse spatial points, for the difference
in the scaling factors (by 2) present in their arguments. For
example, in the case of n =2 and m = 1, we use in our calcu-
lations at the beam waist plane the Laguerre function
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Lll @y =2- (x2 + yz) for the ELG beam, and in the sec-
ond case we use the Laguerre function Lll x,y) =
21— (x 24 y 2 )] of the different argument for the SLG beam.
Zeros of these two functions are located on circles centered at
X=y=0ofradiir=1and r= V2, respectively. That ex-
plains changes in positions of the phase singularities of the
circular form, as can be easily observed from the figures.

In general, except in the far-field region, the phase dis-
tributions of SLG and ELG beams and their phase differ-
ences may appear of very complicated form during the
beam propagation. They depend on all the parameters of
the beams (n,m,w,v,). Nevertheless, it can be observed
that the beam phase distribution is smoother in the case of
ELG beams than in the case of SLG beams. The SLG
beams show more phase singularities during the beam
propagation than the ELG beams do. Indeed, the SLG
beams possess the additional phase jump of 7 due to the ze-
roes of the Laguerre function with a real agument, which
does not exist for the ELG beams, where an argument of
the Laguerre function is complex. For example, Fig. 8
shows the SLG beam field distribution, where the Laguerre
function L}(%,5) = 2[1— 2 +y%)/w?(2)] is involved.
Zeroes of this function are located on a circle centered at
X =y =0. A radius r = w(z) of the circle increases with in-
crease of the propagation distance, due to beam diffraction.

Finally it can be observed that in the far-field the beam
field phase distributions become well defined, highly sym-
metric and clearly visible. The case of radial indices n > m
is considered; thus m = min(n,m) stands for the radial index
of Laguerre functions describing the beams. Topological
charges of the beam singularities are to equal n — m, that is
to the number of the phase discontinuities or the phase
jumps by 7 in the beam field transverse distribution. Loca-
tions of these phase discontinuities in the far field region
depend only on the azimuthal angle ¢ and are different for
the two different — standard and elegant — beam types.
Differences of these locations are expressed uniquely by
one parameter equal to —mm/2 = —(min(n, m)) /2. It can be
easily shown by taking the limit of the argument of equa-
tions Egs. 9 and 10 when 7 tends to infinity. We obtain in
the case where n > m:
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Fig. 8. Phase distribution in the transverse plane (X, ¥) of ‘an (X,5,7) (first line), ‘an (X,5,7) (second hne) and ‘an (x5, 'Z)/(Dnm (X,5,2)
(third line) for n =2, m = 1 at different Z positions: from the beam waist (Z = 0) to the far-field (Z = 10% ). We have set the argument to be
between [0,27]. For the first two lines, the white color stands for 0.
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(third line) for n =5, m = 2 at different Z positions: from the beam waist (Z = 0) to the far-field (Z = 104). We have set the argument to be
between [0,27]. For the first two lines, the white color stands for 0.

So, there is no difference between arguments of Laguerre
functions in the far field; both of them — standard and ele-
gant — are zero. For this reason, the only relevant factors
which contribute to the phase difference between standard
and elegant LG beam fields are [v (2)*/v (Z)]"*™, and
[1/v (Z)]?" respectively. Therefore, the global difference of
phase between these two types of beams in the far field fi-
nally is:

In this way, the differences in azimuthal phase discontinu-
ity orientations of both beams are strictly defined in the far
field. They are equal —mt/2 in Fig. 8 and —x in Fig. 9. The
radial index of SLG and ELG beams differentiates quanti-
tatively the phase transverse distribution of these beams as
they are seen in the far-field.

5. Conclusions

In this communication, we have proved and numerically
verified that the diagonal relations between standard beams
can be directly extended to elegant beams. The explicit di-
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agonal relations (15) and (16) given here for elegant beams
do not seem to have been reported earlier.

We have also presented preliminary results concerning
evolution of transverse phase distribution of elegant beam
fields. This issue also has not been much explored in the
literature yet. Differences in the phase discontinuity loca-
tions between beams of both types, and their evolution dur-
ing propagation, depend on radial indices of Laguerre func-
tions describing the beams. We have shown that at the
waist and in the far-field the phase portraits obtained are
well defined and are simple enough to be quantitatively in-
terpreted. In the range between these two limits the phase
portraits are of more complicated form and depend on all
parameters of the beams.

Appendix

Derivation of the relation between the diagonal EHG and
non-diagonal EHG (Eq. 15) beams is presented below.
We start from the relation between the Hermite function
in a form given by Abramochkin et al. and Allen et al.
[6,7]:
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B P Ot ) = (x_y jH (”y j (A1)
Pt k n+m—k k)= n \/5 m \/5 4 :

which is valid for both real and complex x and y arguments. Applying to eq. A.18 the definition of Hermite polynomials:
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and by multiplying each term of these summations by k"-%-% where kK # 0 is an arbitrary, eventually complex, parameter,
the above equation can be rewritten as:
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k=0 =0 1=0 IW(N —k =2])! Jlk —2))!
i -21 -2j
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=0 j=0 =20 jlim=2)\ 2 N

or equivalently

N
= K(x — K(x +
=0 V2 V2
Then we set k¥ = 1/v(Z) and multiply each side of Eq. (A.3) by
ntm 2 1 n+m
2_T N G N? ~’~
Vn!m!ﬂ(v(’f)) *%.3.9)
That finally reads, accordingly to the notation of Eq. (15)
N o o~ o~
kom— +m—k)k! e ntm X—-y X+y _
_oyk p(n—km=k) gy | EHG (35 5y =22y EHG ’ ’ Al
k§0< ) B O W Nk 5.9) Vi | "5 5 7 (A4)
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Diagonal relations between elegant Hermite-Gaussian and Laguerre-Gaussian beam fields

The parallel relation for elegant Laguerre-Gaussian
beams (eq. 16) can be proved by use of considerations sim-
ilar to those employed by Zauderer [14] in another context,
or along the lines presented in the work, where the follow-
ing relation [6,7]:

N

2, @) P Oy OH () =

k=0 (A5)

2n+m{(—1>'"m!<x+iy>"‘mL’;;”1(x22 #2) forn > m
D" nlx=ip)" "L (x +y7) forn <m

can be treated as a starting point of such analysis.
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