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In this paper, a randomized method for detecting multiple ellipses based on the least square approach is presented. The main

concept used is that we first randomly select three edge pixels in the image, which are the centre of three windows with the

same size. In order to determine a possible ellipse, we use the least square method to fit all the edge points in these three win-

dow, and to solve the ellipse parameters through Lagrange multiplier method. Then we randomly select the fourth edge pixel

in the image and define a distance criterion to determine whether there is a possible ellipse in the image. After finding a pos-

sible ellipse, we apply a further verification process to determine whether the possible ellipse is a true ellipse or not. Some ar-

tificial images with different levels of noises and some natural grey images containing circular objects with some occluded

ellipses and missing edges have been taken to test the performance. Experimental results demonstrate that the proposed al-

gorithm is faster and more accurate than other methods.

Keywords: circular feature, ellipse, detection, randomized, least square.
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Successful detection of multiple intersecting or occluded

geometric shapes such as ellipses in a digital image is an

important task in pattern recognition and computer vision.

Ellipse features are not only the basic elements in nature

but also very common shapes in many man-made objects,

which have been commonly used in robot vision fields.

Circular feature is a particular case of conic feature, be-

cause its perspective projection in any arbitrary orientation

is always an exact ellipse. Efficient recognition of ellipses

from digital images is important for locating objects in

many vision-based fields. For example, circular features

have been widely used in robot vision for accurate self-lo-

cating with circular landmarks and football tracking in ro-

bot soccer competition [1,2].

A variety of approaches have been suggested for detect-

ing the ellipse and estimating the related parameters. The

Hough transform [3] is a standard method for detecting

curves that may be easily parameterized, such as lines, cir-

cles and ellipses. It consists of the following steps. Firstly,

a pixel in the image is mapped to a curve in some para-

meterized space. Secondly, the parameters of valid curve

are binned into an accumulator where the number of curves

in a bin equals its score, and at last, a curve with a maxi-

mum score is selected from the accumulator to represent a

curve in the image. Since defining an ellipse requires five

parameters, the Hough transform needs 5D accumulator ar-

ray over parameter space. So, this method tends to occupy

a large amount of memory, has low speed, as well as it is

difficult and ambiguous to find multiple local maxima of

the corresponding 5D histogram, which leads to low accu-

racy and even incorrect solutions.

An efficient randomized algorithm is presented for de-

tecting circles [4]. The main concept used is that it first ran-

domly selects four edge pixels in the image and defines a

distance criterion to determine whether there is a possible

circle in the image; after finding a possible circle, apply an

evidence-collecting process to further determine whether

the possible circle is a true circle or not. This algorithm

cannot detect ellipses although it can detect multiple circles

efficiently.

An improved ellipse detection method is using random-

ized Hough transform (RHT) [5–7], whose basic principle

is a stochastic process. The algorithm includes stochastical-

ly taking any three edge pixels out of the image that lie on

an edge curve, defining a small neighbourhood around the

pixels, finding the line of best fit to those pixels within the

neighbourhood with least squares method. The line through

the midpoint of two stochastic points and the intersection

of their tangents can be obtained, so the intersection of two

such lines is the ellipse centre. This algorithm has serious

disadvantages because the tangents at any point are sensi-

tively changing for its neighbour pixels selected by the

window, leading to the uncertainty of parameters and low

accuracy.

Another improved approach is the consistent symmetric

axis method (CSA) [8], which utilizes the information in-
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herent in the symmetric axes throughout the entire process

to compute all of the parameters. Since determination of

the symmetric axes involves a set of points on the ellipse,

this method fails to detect broken ellipses, and the accuracy

is low.

A direct least square method [9,10] is an efficient pa-

rameters fitting of ellipse to scattered data. This approach

is based on a least squares minimization and guarantees an

ellipse-specific solution with no computational ambiguity.

However, this algorithm is sensitive to noise and fails in

detecting multiple ellipses in an image.

In this paper, we present a new ellipse detection algo-

rithm (RED), which combines the advantages of the least

square method with the randomized algorithm. Since the

pixels in three windows, centred at three stochastic pixels,

are enough to determine an ellipse with the least square

method, suppose that many sets of three chosen edge pixels

all come from the same ellipse, and then it seems very

probable that the ellipse is real. Our proposed algorithm

first randomly selects three edge pixels that are the centre

of three windows with the same size in the image, and fit

all these edge points in these three windows to an supposed

ellipse by the least square method; then randomly selects

the fourth edge pixel in the image, and defines a distance

criterion to determine whether this pixel also comes from

the supposed ellipse in the image. After finding a possible

ellipse, then with high probability the ellipse seems to be

real, so we apply an evidence-collecting process to further

determine whether the possible ellipse is the desired el-

lipse. As shown in Fig. 1, three different elliptical edge arcs

in their windows centred at the stochastic pixels can gener-

ally determine an ellipse. Since the proposed algorithm is

not based on the technique of voting in the parameter

space, it does not need extra accumulator storage. In fact,

the memory requirements needed in the proposed algo-

rithm are small. The proposed algorithm has some other

advantages such as high speed and being robust to noise.

Some synthetic images with different levels of noise and

some realistic images that contain circular objects with

some occluded ellipses and missing edges have been taken

to verify the memory-saving and computational advantages

of the proposed algorithm when compared to previous

methods.
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This section consists of three subsections which describe

how to determine a possible ellipse according to the edge

points in three windows centred at the stochastic pixels and

the fourth randomly selected edge pixel. The first subsec-

tion describes how to obtain the coefficients of the ellipse

equation by scattered data. The second subsection presents

how to obtain the five parameters of the ellipse through six

coefficients. The last subsection provides the distance crite-

rion used to determine whether the fourth edge pixel se-

lected lies on a possible ellipse or not.

���� ������	���	���������	���������	�	����

It is well known that accurate estimation of basic parame-

ters of an elliptical shape is important for the accuracy of

the 3D model of circular features. The general form of a

common quadratic curve can be expressed as the form

F u v US au buv cv du ev f( , ) ,� � � � � � � �2 2 0 (1)

where U u uvv u v� [ ]2 2 1 and S a b c d e f T� [ ] .

We can decompose the coefficients of the ellipse into
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1 � [ ] , S d e f T

2 � [ ] .

Looking for accurate estimation of elliptical parame-

ters, the least squares method is centred on finding the set

of parameters that minimize the squares sum of an error of

fit between the data points and the ellipse
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where W U U Un
T� [ ]1 2 � is called the design matrix

which can be described in detail as the size of n 	 6 matrix
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We can decompose the design matrix W into its qua-

dratic and linear parts

W W W� [ ]1 2 , (5)
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Fig. 1. A digital ellipse.
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In order to fit the ellipse with the data points, the con-

straint for the conic is well known that the discriminant

b ac2 4
 is negative. Since we have the freedom to arbi-

trarily scale the parameters of the conic, we can impose the

equality constraint 4 12ac b
 � , which can be expressed

in the matrix form of S GST � 1, this is

ST
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In the same way, the constraint matrix G can be ex-

pressed as
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Applying the decomposition principle, the constraint equa-

tion can be reformulated to

S G ST
1 1 1 1� . (8)

By introducing the Lagrange multiplier �, we can get the

simultaneous equations
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where H W WT� is the scatter matrix of the size 6 	 6,

which can be described in detail as
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Similarly, the scatter matrix H can be split as the fol-

lowing blocked matrices
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Combining all the decompositions, we can get the fol-

lowing equation
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which is equivalent to the following two equations
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In the above equation, S2 can be expressed as
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So, we can yield
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which can be rewritten as

G H H H H S ST
1

1
1 2 3

1
2 1 1


 

 �( ) � . (16)

Considering all the decomposition processes, we can

obtain the following set of equations
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where R G H H H H T� 
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Since the fitting of a general conic to a set of points

may be approached by minimizing the sum of squared al-

gebraic distances of the points to the conic which is ex-

pressed by the coefficients S

min ( ) min min

min min

S i
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i i
S S
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To solve these equations, we first need to get all possible

solutions of the generalized eigenvectors then select those

that corresponding to the minimal positive eigenvalue �.

���� ������	���	���������	��������������

The given set of edge points ( , ),u vi i i n� 1, ,� in the image

coordinate system ( , )u v

au buv cv du ev f2 2 0� � � � � � . (19)
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If there is a new coordinate system ( , )u v0 0 whose axes

are parallel to major axis and minor axis of the ellipse, as

shown in Fig. 2, then we have the following equation

u u v
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which is equivalent to the following transformation matrix
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The coefficients of u v0 0 is zero when the rotational an-

gle of the ellipse is zero, so we have


 � � 
 �2 2 02 2
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which can be solved as
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Since in the coordinate system ( , )u v , the curve should

be satisfied with
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In the coordinate system ( , )u v0 0 , the curve should be
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Therefore, the five parameters of an ellipse such as the

centre point coordinates ( , )u vc c , the major axis length M,

the minor axis length N, the angle or orientation of the el-

lipse �, which is illustrated in Fig. 3 can be calculated using

the following formulas:

– the rotational angle of the ellipse

� �



1

2
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– the major axis length

M
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– the minor axis length
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where

m a b c1
2 2� � �cos sin cos sin� � � �,

n d e1 � �cos sin� �,

m a b c2
2 2� 
 �sin sin cos cos� � � �,

n d e2 � 
 �sin cos� �.
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Let V denotes the set of all edge pixels in the image, and

p u v4 4 4� ( , ) be the fourth selected edge pixel, then the

distance between p4 and the boundary of the ellipse, de-

noted by dist, can be calculated by

dist au bu v cv du ev f� � � � � �4
2

4 4 4
2

4 4 . (30)

If p4 lies on the ellipse, the ideal value of dist is zero.

Since the image is digital, it rarely happens that the edge
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pixel lies exactly on an ellipse. Therefore, the goal of el-

lipse detection is to detect a set of edge pixels that lie not

exactly but roughly on a digital ellipse. For convenience,

the set of edge pixels that form a digital ellipse is also

called an ellipse and these edge pixels are called

co-elliptical. As shown in Fig. 1, if p4 lies on the boundary

of the ellipse, then the value of dist in the above equation is

very small, which can be used to determine whether p4 lies

on the ellipse or not. Once we find the distance is smaller

than the given threshold Td, we claim that the fourth edge

pixel is co-elliptical with the possible ellipse.

However, let us consider an undesirable case. When

two of the three agent pixels of the possible ellipse are too

close, the possible ellipse may not be the true ellipse. For

example, p1, p2, and p3 lie on a true ellipse, but the ellipse

determined by p1, p2, and p3 differs from the true ellipse.

The undesirable case occurs when p2, and p3 are too close.

To avoid this case, the distance between any two selected

pixels must be greater than the given threshold Ta. If so, it

means that the three agent pixels have strong evidence to

be the representatives of the possible ellipse.

���� ������	���	��������������	���

After detecting a possible ellipse with five parameters,

whether the possible ellipse is a true ellipse can be checked

by the following evidence-collecting process. Initially, we

set a counter num = 0 for this possible ellipse in order to

count how many edge pixels lie on the possible ellipse. For

each edge pixel pe in V, the distance dist can be obtained. If

dist is not larger than the given distance threshold Td, we

increment the counter num by one and take pe out of V, oth-

erwise we proceed to the next edge pixel. We continue the

above process until all the edge pixels in V have been ex-

amined. In the evidence-collecting process, let ne denotes

the number of edge pixels on the possible ellipse. In fact,

the final value of num is equal to ne. If ne is larger than the

given global threshold Tr, we claim that the possible ellipse

is a true ellipse. Otherwise, the possible ellipse is a false el-

lipse and we return those ne edge pixels into the set V. El-

lipses with different axes have different circumferences.

Therefore, employing some large global threshold Tr is un-

fair to those ellipses with small axes. To overcome the nor-

malized problem, we apply a ratio to this threshold. Note

that when a true ellipse is detected, then the edge pixels ly-

ing on the ellipse are taken out of the set of current edge

pixels. This leads to speeding up the detection of the next

ellipse.

�� ���������	�����������������������	���

From the basic principle described above, the proposed al-

gorithm consists of the following steps.

Step 1. Store all edge pixels p u vi i i� ( , ) to the set V

and initialize the failure counter f to be zero. Let Tf, Tem, Ta,

Td, Tr be the given thresholds. Here, np denote the number

of edge pixels retained in V, and Tf denotes the number of

failures that we can tolerate. If there are less than Tem pixels

in V, we stop the task of ellipse detection. The distance be-

tween any two selected pixels of the possible ellipse should

be larger than the distance threshold Ta. Td is the given

threshold for the distance between the fourth selected

pixel p4 and the boundary of the ellipse. Tr is the ratio

threshold.

Step 2. If f = Tf or np < Tem, then stop; otherwise, we

randomly pick four pixels pi, i = 1,2,3,4 out of V. When pi

has been chosen, take out of the set of current edge pixels

V = V – {pi}.

Step 3. From the four edge pixels, find out the possible

ellipse such that the distance between any two of the three

selected pixels is larger than Ta and the distance between

the fourth pixel and the boundary of the possible ellipse is

larger than Td; then go to step 4. Otherwise, put

pi, i = 1,2,3,4 back to V; perform f = f + 1; then go to step 2.

Step 4. Assume Eijk is the possible ellipse. Set the

counter num to be 0. For each pm in V, we check whether

dist is not larger than the given distance threshold Td. If

yes, num = num + 1 and take pm out of V. After examining

all the edge pixels in V, assume num = ne, i.e., there are ne

edge pixels satisfying dist < Td.

Step 5. If ne � Tr, go to step 6. Otherwise, regard the

possible ellipse as a false ellipse, return these ne edge pix-

els into V, perform f = f + 1; and go to step 2.

Step 6. The possible ellipse Eijk has been detected as a

true ellipse. Set f to be zero and go to step 2.

�� � ���	��������������

We performed all the experiments on a Pentium IV 2.4

GHz computer using Matlab language. The first experi-

ment is tested on the 580 	 480 synthetic images that are

created by adding spiced salt noise at various levels to three

original images. The original synthetic image with 1164

edge pixels and 6984 noise points is shown in Fig. 4(a),

which consists of three separate ellipses with different di-

rections. The original synthetic image with 959 edge pixels

and 5754 noise points is shown in Fig. 4(c), which consists

of three overlapped ellipses with different directions. The

original synthetic image with 712 edge pixels and 4272

noise points is shown in Fig. 4(e), which consists of three

overlapped elliptical arcs with different directions. The de-

tected ellipses proposed by our algorithm are shown in Fig.

4(b), Fig. 4(d), and Fig. 4(f), respectively, where the broad

lines in the image display the detected major axis and mi-

nor axis of the ellipses, from which we can see their inter-

sections is the center of the ellipses, and the slope of the

major axis is the tangent of the rotational angle of the el-

lipse. The estimated five parameters of the ellipses detected

in images in shown in Table 1.

For the purpose of comparison, we apply the RHT, the

CSA and our proposed RED to a typical image as shown in

Fig. 4(a). We perform detection of an algorithm by adding
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increasing noise to the original image and the number of

the noise is one multiple to six multiple of the edge pixels.

Every image with different multiple of noise is performed

200 times to test the tolerance of the algorithms to uniform.

The accuracy reduces when the noise increases from low to

high level. The result of the experiment is shown in Fig.

5(a), from which we can conclude that the accuracy of the

RED is much higher than the RHT and the CSA.

The execution time required in each method is mea-

sured in terms of seconds and it is obtained from the aver-

age of 200 simulations. Figure 5(b) illustrates the execution

time required in the related three methods against the num-

ber of multiple of noise to the edge pixels. It is observed

that the execution time required in the proposed RED is

smaller than the time in the RHT and the CSA.

The second experiment is carried out on real images

captured by our vision system in the lab, which consisted

of the VC-C4 camera with the resolution of 320 	 240, and

the image board BT848. We use an image with several el-

lipse features as shown in Fig. 6(a) to measure the validity

of our proposed algorithm. The detected ellipses and ellip-

tical arcs are traced out with curves, while the detected ma-

jor axis and minor axis are expressed with lines, whose in-

tersection is the centre of ellipse, as shown in Fig. 6(b). The

estimated five ellipse parameters are shown in Table 2.

A randomized algorithm for detecting multiple ellipses based on least square approach
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Fig. 4. The experiment on the synthetic images with noises. (a) The

image with three separate ellipses. (b) The detected ellipses of the

proposed algorithm. (c) The image with three occluded ellipses. (d)

The detected ellipses of the proposed algorithm. (e) The image with

three intersected elliptical arcs. (f) The detected elliptical arcs of

the proposed algorithm.

Table 1. The estimated five parameters of the ellipses detected in

Fig. 4.

Parameters uc vc M N �(�)

Fig. 4(a) 371.4247
371.0429
227.2782

271.9050
131.8847
208.8658

79.8157
81.2140
81.1467

54.0932
53.9996
53.8514

89.9467
50.0629
0.2008

Fig. 4(c) 366.2288
204.8841
294.5926

203.4263
227.0736
263.0277

80.4720
80.8179
80.7442

53.9710
53.8436
54.0069

49.8350
89.8228
0.0321

Fig. 4(e) 261.3917
367.9825
366.1103

181.7210
254.7325
140.1047

80.2635
85.3853
66.3604

53.9371
52.9958
42.5389

–70.5887
9.8093

–41.1210

Fig. 5. Percentage accuracy with multiple noises (a) and average computation time with multiple noises (b).



Table 2. The estimated five parameters of the ellipses detected in

Fig. 7.

Parameters uc vc M N �(�)

Ellipse 1 130.6774 125.6068 81.1252 38.4464 3.2145

Ellipse 2 133.5000 157.5221 78.9923 36.8724 1.0104

Ellipse 3 215.6895 45.8776 64.6687 13.3672 –11.1879

!� "������	���

In this paper, a randomized algorithm based on the least

square approach has been presented for the efficient detec-

tion of ellipses. The proposed algorithm is based on ran-

domly picking three edge pixels that are the centre of three

windows with the same size in the image, fitting ellipses to

data points in these three windows by minimizing the alge-

braic distance, then randomly selects the fourth edge pixel

and defines a distance criterion to determine whether there

is a possible ellipse in the image. After we find a possible

ellipse, we use an evidence-collecting process to check

whether the possible ellipse is a true ellipse or not. The pro-

posed algorithm does not need to vote in the parameter

space, so it indeed does not need any extra storage for rep-

resenting the accumulator which is needed in the previous

Hough transform based methods. Some synthetic images

with different levels of noise and some realistic images that

contain circular objects with some occluded ellipses and

missing edges have been taken to justify the mem-

ory-saving and computational advantages of the proposed

algorithm. Experimental results demonstrate that the pro-

posed algorithm is more accurate and faster than other

methods in the literature.
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Fig. 6. Real image (a) and ellipses detected by the proposed

algorithm (b).
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