A randomized algorithm for detecting multiple ellipses based on least square approach

L. LI*, Z. FENG, and K. HE
Institute of System Engineering, Xi'an Jiaotong University
Xi'an, ShanXi, 710049, P.R. China

Abstract

In this paper, a randomized method for detecting multiple ellipses based on the least square approach is presented. The main concept used is that we first randomly select three edge pixels in the image, which are the centre of three windows with the same size. In order to determine a possible ellipse, we use the least square method to fit all the edge points in these three window, and to solve the ellipse parameters through Lagrange multiplier method. Then we randomly select the fourth edge pixel in the image and define a distance criterion to determine whether there is a possible ellipse in the image. After finding a possible ellipse, we apply a further verification process to determine whether the possible ellipse is a true ellipse or not. Some artificial images with different levels of noises and some natural grey images containing circular objects with some occluded ellipses and missing edges have been taken to test the performance. Experimental results demonstrate that the proposed algorithm is faster and more accurate than other methods.

Keywords: circular feature, ellipse, detection, randomized, least square.

1. Introduction

Successful detection of multiple intersecting or occluded geometric shapes such as ellipses in a digital image is an important task in pattern recognition and computer vision. Ellipse features are not only the basic elements in nature but also very common shapes in many man-made objects, which have been commonly used in robot vision fields. Circular feature is a particular case of conic feature, because its perspective projection in any arbitrary orientation is always an exact ellipse. Efficient recognition of ellipses from digital images is important for locating objects in many vision-based fields. For example, circular features have been widely used in robot vision for accurate self-locating with circular landmarks and football tracking in robot soccer competition [1,2].

A variety of approaches have been suggested for detecting the ellipse and estimating the related parameters. The Hough transform [3] is a standard method for detecting curves that may be easily parameterized, such as lines, circles and ellipses. It consists of the following steps. Firstly, a pixel in the image is mapped to a curve in some parameterized space. Secondly, the parameters of valid curve are binned into an accumulator where the number of curves in a bin equals its score, and at last, a curve with a maximum score is selected from the accumulator to represent a curve in the image. Since defining an ellipse requires five parameters, the Hough transform needs 5D accumulator ar-

[^0]ray over parameter space. So, this method tends to occupy a large amount of memory, has low speed, as well as it is difficult and ambiguous to find multiple local maxima of the corresponding 5D histogram, which leads to low accuracy and even incorrect solutions.

An efficient randomized algorithm is presented for detecting circles [4]. The main concept used is that it first randomly selects four edge pixels in the image and defines a distance criterion to determine whether there is a possible circle in the image; after finding a possible circle, apply an evidence-collecting process to further determine whether the possible circle is a true circle or not. This algorithm cannot detect ellipses although it can detect multiple circles efficiently.

An improved ellipse detection method is using randomized Hough transform (RHT) [5-7], whose basic principle is a stochastic process. The algorithm includes stochastically taking any three edge pixels out of the image that lie on an edge curve, defining a small neighbourhood around the pixels, finding the line of best fit to those pixels within the neighbourhood with least squares method. The line through the midpoint of two stochastic points and the intersection of their tangents can be obtained, so the intersection of two such lines is the ellipse centre. This algorithm has serious disadvantages because the tangents at any point are sensitively changing for its neighbour pixels selected by the window, leading to the uncertainty of parameters and low accuracy.

Another improved approach is the consistent symmetric axis method (CSA) [8], which utilizes the information in-
herent in the symmetric axes throughout the entire process to compute all of the parameters. Since determination of the symmetric axes involves a set of points on the ellipse, this method fails to detect broken ellipses, and the accuracy is low.

A direct least square method $[9,10]$ is an efficient parameters fitting of ellipse to scattered data. This approach is based on a least squares minimization and guarantees an ellipse-specific solution with no computational ambiguity. However, this algorithm is sensitive to noise and fails in detecting multiple ellipses in an image.

In this paper, we present a new ellipse detection algorithm (RED), which combines the advantages of the least square method with the randomized algorithm. Since the pixels in three windows, centred at three stochastic pixels, are enough to determine an ellipse with the least square method, suppose that many sets of three chosen edge pixels all come from the same ellipse, and then it seems very probable that the ellipse is real. Our proposed algorithm first randomly selects three edge pixels that are the centre of three windows with the same size in the image, and fit all these edge points in these three windows to an supposed ellipse by the least square method; then randomly selects the fourth edge pixel in the image, and defines a distance criterion to determine whether this pixel also comes from the supposed ellipse in the image. After finding a possible ellipse, then with high probability the ellipse seems to be real, so we apply an evidence-collecting process to further determine whether the possible ellipse is the desired ellipse. As shown in Fig. 1, three different elliptical edge arcs in their windows centred at the stochastic pixels can generally determine an ellipse. Since the proposed algorithm is not based on the technique of voting in the parameter space, it does not need extra accumulator storage. In fact, the memory requirements needed in the proposed algorithm are small. The proposed algorithm has some other advantages such as high speed and being robust to noise. Some synthetic images with different levels of noise and

Fig. 1. A digital ellipse.
some realistic images that contain circular objects with some occluded ellipses and missing edges have been taken to verify the memory-saving and computational advantages of the proposed algorithm when compared to previous methods.

2. Determination of possible ellipses by least squares fitting

This section consists of three subsections which describe how to determine a possible ellipse according to the edge points in three windows centred at the stochastic pixels and the fourth randomly selected edge pixel. The first subsection describes how to obtain the coefficients of the ellipse equation by scattered data. The second subsection presents how to obtain the five parameters of the ellipse through six coefficients. The last subsection provides the distance criterion used to determine whether the fourth edge pixel selected lies on a possible ellipse or not.

2.1. Determination of ellipse coefficients

It is well known that accurate estimation of basic parameters of an elliptical shape is important for the accuracy of the 3D model of circular features. The general form of a common quadratic curve can be expressed as the form

$$
\begin{equation*}
F(u, v)=U S=a u^{2}+b u v+c v^{2}+d u+e v+f=0 \tag{1}
\end{equation*}
$$

where $U=\left[u^{2} u v v^{2} u v 1\right]$ and $S=[a b c d e f]^{T}$.
We can decompose the coefficients of the ellipse into

$$
S=\left[\begin{array}{l}
S_{1} \tag{2}\\
S_{2}
\end{array}\right]
$$

where $S_{1}=[a b c]^{T}, S_{2}=[d e f]^{T}$.
Looking for accurate estimation of elliptical parameters, the least squares method is centred on finding the set of parameters that minimize the squares sum of an error of fit between the data points and the ellipse
$e=\sum_{t=1}^{n}\left(a u_{i}^{2}+b u_{i} v_{i}+c v_{i}^{2}+d u_{i}+e v_{i}+f\right)^{2}=\|S W\|^{2},(3)$
where $W=\left[U_{1} U_{2} \ldots U_{n}\right]^{T}$ is called the design matrix which can be described in detail as the size of $n \times 6$ matrix
$W=\left[\begin{array}{cccccc}u_{1}^{2} & u_{1} v_{1} & v_{1}^{2} & u_{1} & v_{1} & 1 \\ u_{2}^{2} & u_{2} v_{2} & v_{2}^{2} & u_{2} & v_{2} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n}^{2} & u_{n} v_{n} & v_{n}^{2} & u_{n} & v_{n} & 1\end{array}\right]$.
We can decompose the design matrix W into its quadratic and linear parts

$$
\begin{equation*}
W=\left[W_{1} W_{2}\right], \tag{5}
\end{equation*}
$$

where

$$
W_{1}=\left[\begin{array}{ccc}
u_{1}^{2} & u_{1} v_{1} & v_{1}^{2} \\
u_{2}^{2} & u_{2} v_{2} & v_{2}^{2} \\
\vdots & \vdots & \vdots \\
u_{n}^{2} & u_{n} v_{n} & v_{n}^{2}
\end{array}\right]
$$

and

$$
W_{2}=\left[\begin{array}{ccc}
u_{1} & v_{1} & 1 \\
u_{2} & v_{2} & 1 \\
\vdots & \vdots & \vdots \\
u_{n} & v_{n} & 1
\end{array}\right]
$$

In order to fit the ellipse with the data points, the constraint for the conic is well known that the discriminant $b^{2}-4 a c$ is negative. Since we have the freedom to arbitrarily scale the parameters of the conic, we can impose the equality constraint $4 a c-b^{2}=1$, which can be expressed in the matrix form of $S^{T} G S=1$, this is

$$
S^{T}\left[\begin{array}{cccccc}
0 & 0 & 2 & 0 & 0 & 0 \tag{6}\\
0 & -1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] S=1
$$

In the same way, the constraint matrix G can be expressed as

$$
G=\left[\begin{array}{cc}
G_{1} & 0 \tag{7}\\
0 & 0
\end{array}\right]
$$

where

$$
G_{1}=\left[\begin{array}{ccc}
0 & 0 & 2 \\
0 & -1 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

Applying the decomposition principle, the constraint equation can be reformulated to

$$
\begin{equation*}
S_{1}^{T} G_{1} S_{1}=1 \tag{8}
\end{equation*}
$$

By introducing the Lagrange multiplier λ, we can get the simultaneous equations

$$
\left\{\begin{array}{l}
H S=\lambda G S \tag{9}\\
S^{T} G S=1
\end{array}\right.
$$

where $H=W^{T} W$ is the scatter matrix of the size 6×6, which can be described in detail as

$$
H=\left[\begin{array}{llllll}
H_{u^{4}} & H_{u^{3} v} & H_{u^{2} v^{2}} & H_{u^{3}} & H_{u^{2} v} & H_{u^{2}} \tag{10}\\
H_{u^{3} v} & H_{u^{2} v^{2}} & H_{u v^{3}} & H_{u^{2} v} & H_{u v^{2}} & H_{u v} \\
H_{u^{2} v^{2}} & H_{u v^{3}} & H_{v^{4}} & H_{u v^{2}} & H_{v^{3}} & H_{v^{2}} \\
H_{u^{3}} & H_{u^{2} v} & H_{u v^{2}} & H_{u^{2}} & H_{u v} & H_{u} \\
H_{u^{2} v} & H_{u v^{2}} & H_{u^{3}} & H_{u v} & H_{v^{2}} & H_{v} \\
u_{u^{2}} & H_{u v} & H_{v^{2}} & H_{u} & H_{v} & H_{1}
\end{array}\right],
$$

Fig. 2. Transformation for image coordinate.
If there is a new coordinate system $\left(u_{0}, v_{0}\right)$ whose axes are parallel to major axis and minor axis of the ellipse, as shown in Fig. 2, then we have the following equation

$$
\left\{\begin{array}{l}
u=u_{0} \cos \theta-v_{0} \sin \theta \tag{20}\\
v=u_{0} \sin \theta-v_{0} \cos \theta
\end{array},\right.
$$

which is equivalent to the following transformation matrix

$$
\left[\begin{array}{l}
u \tag{21}\\
v
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right] .
$$

The coefficients of $u_{0} v_{0}$ is zero when the rotational angle of the ellipse is zero, so we have

$$
\begin{equation*}
-2 a \sin \theta \cos \theta+2 c \sin \theta \cos \theta+b\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=0 \tag{22}
\end{equation*}
$$

which can be solved as

$$
\begin{equation*}
\tan (2 \theta)=\frac{b}{a-c} \tag{23}
\end{equation*}
$$

Since in the coordinate system (u, v), the curve should be satisfied with

$$
\begin{equation*}
a u^{2}+b u v+c v^{2}+d u+e v+f=0 \tag{24}
\end{equation*}
$$

In the coordinate system $\left(u_{0}, v_{0}\right)$, the curve should be
$a\left(u_{0} \cos \theta-v_{0} \sin \theta\right)^{2}+b\left(u_{0} \cos \theta-v_{0} \sin \theta\right)$
$\times\left(u_{0} \sin \theta+v_{0} \cos \theta\right)+c\left(u_{0} \sin \theta+v_{0} \cos \theta\right)^{2}$
$+d\left(u_{0} \cos \theta-v_{0} \cos \theta\right)+e\left(u_{0} \sin \theta+v_{0} \cos \theta\right)+f=0$
Therefore, the five parameters of an ellipse such as the centre point coordinates $\left(u_{c}, v_{c}\right)$, the major axis length M, the minor axis length N, the angle or orientation of the ellipse θ, which is illustrated in Fig. 3 can be calculated using the following formulas:

- the rotational angle of the ellipse

$$
\begin{equation*}
\theta=\frac{1}{2} \arctan \frac{b}{a-c}, \tag{26}
\end{equation*}
$$

Fig. 3. Illustration of ellipse parameter.

- the center point coordinates

$$
\left\{\begin{array}{l}
u_{c}=-\frac{n_{1}}{2 m_{1}} \tag{27}\\
v_{c}=-\frac{n_{2}}{2 m_{2}}
\end{array}\right.
$$

- the major axis length

$$
\begin{equation*}
M=\sqrt{\frac{m_{2} n_{1}^{2}+m_{1} n_{2}^{2}-4 m_{1} m_{2} f}{4 m_{1}^{2} m_{2}}} \tag{28}
\end{equation*}
$$

- the minor axis length

$$
\begin{equation*}
N=\sqrt{\frac{m_{2} n_{1}^{2}+m_{1} n_{2}^{2}-4 m_{1} m_{2} f}{4 m_{1} m_{2}^{2}}} \tag{29}
\end{equation*}
$$

where

$$
\begin{gathered}
m_{1}=a \cos ^{2} \theta+b \sin \theta \cos \theta+c \sin ^{2} \theta \\
n_{1}=d \cos \theta+e \sin \theta \\
m_{2}=a \sin ^{2} \theta-b \sin \theta \cos \theta+c \cos ^{2} \theta \\
n_{2}=-d \sin \theta+e \cos \theta
\end{gathered}
$$

2.3. Determination of possible ellipse

Let V denotes the set of all edge pixels in the image, and $p_{4}=\left(u_{4}, v_{4}\right)$ be the fourth selected edge pixel, then the distance between p_{4} and the boundary of the ellipse, denoted by dist, can be calculated by

$$
\begin{equation*}
d i s t=\left|a u_{4}^{2}+b u_{4} v_{4}+c v_{4}^{2}+d u_{4}+e v_{4}+f\right| \tag{30}
\end{equation*}
$$

If p_{4} lies on the ellipse, the ideal value of dist is zero. Since the image is digital, it rarely happens that the edge
pixel lies exactly on an ellipse. Therefore, the goal of ellipse detection is to detect a set of edge pixels that lie not exactly but roughly on a digital ellipse. For convenience, the set of edge pixels that form a digital ellipse is also called an ellipse and these edge pixels are called co-elliptical. As shown in Fig. 1, if p_{4} lies on the boundary of the ellipse, then the value of dist in the above equation is very small, which can be used to determine whether p_{4} lies on the ellipse or not. Once we find the distance is smaller than the given threshold T_{d}, we claim that the fourth edge pixel is co-elliptical with the possible ellipse.

However, let us consider an undesirable case. When two of the three agent pixels of the possible ellipse are too close, the possible ellipse may not be the true ellipse. For example, p_{1}, p_{2}, and p_{3} lie on a true ellipse, but the ellipse determined by p_{1}, p_{2}, and p_{3} differs from the true ellipse. The undesirable case occurs when p_{2}, and p_{3} are too close. To avoid this case, the distance between any two selected pixels must be greater than the given threshold T_{a}. If so, it means that the three agent pixels have strong evidence to be the representatives of the possible ellipse.

2.4. Determination of true ellipse

After detecting a possible ellipse with five parameters, whether the possible ellipse is a true ellipse can be checked by the following evidence-collecting process. Initially, we set a counter num $=0$ for this possible ellipse in order to count how many edge pixels lie on the possible ellipse. For each edge pixel p_{e} in V, the distance dist can be obtained. If dist is not larger than the given distance threshold T_{d}, we increment the counter num by one and take p_{e} out of V, otherwise we proceed to the next edge pixel. We continue the above process until all the edge pixels in V have been examined. In the evidence-collecting process, let n_{e} denotes the number of edge pixels on the possible ellipse. In fact, the final value of num is equal to n_{e}. If n_{e} is larger than the given global threshold T_{r}, we claim that the possible ellipse is a true ellipse. Otherwise, the possible ellipse is a false ellipse and we return those n_{e} edge pixels into the set V. Ellipses with different axes have different circumferences. Therefore, employing some large global threshold T_{r} is unfair to those ellipses with small axes. To overcome the normalized problem, we apply a ratio to this threshold. Note that when a true ellipse is detected, then the edge pixels lying on the ellipse are taken out of the set of current edge pixels. This leads to speeding up the detection of the next ellipse.

3. Illustration of the proposed algorithm

From the basic principle described above, the proposed algorithm consists of the following steps.

Step 1. Store all edge pixels $p_{i}=\left(u_{i}, v_{i}\right)$ to the set V and initialize the failure counter f to be zero. Let $T_{f}, T_{e m}, T_{a}$, T_{d}, T_{r} be the given thresholds. Here, n_{p} denote the number
of edge pixels retained in V, and T_{f} denotes the number of failures that we can tolerate. If there are less than $T_{e m}$ pixels in V, we stop the task of ellipse detection. The distance between any two selected pixels of the possible ellipse should be larger than the distance threshold T_{a}. T_{d} is the given threshold for the distance between the fourth selected pixel p_{4} and the boundary of the ellipse. T_{r} is the ratio threshold.

Step 2. If $f=T_{f}$ or $n_{p}<T_{e m}$, then stop; otherwise, we randomly pick four pixels $p_{i}, i=1,2,3,4$ out of V. When p_{i} has been chosen, take out of the set of current edge pixels $V=V-\left\{p_{i}\right\}$.

Step 3. From the four edge pixels, find out the possible ellipse such that the distance between any two of the three selected pixels is larger than T_{a} and the distance between the fourth pixel and the boundary of the possible ellipse is larger than T_{d}; then go to step 4. Otherwise, put $p_{i}, i=1,2,3,4$ back to V; perform $f=f+1$; then go to step 2 .

Step 4. Assume $E_{i j k}$ is the possible ellipse. Set the counter num to be 0 . For each p_{m} in V, we check whether dist is not larger than the given distance threshold T_{d}. If yes, num $=$ num +1 and take p_{m} out of V. After examining all the edge pixels in V, assume $n u m=n_{e}$, i.e., there are n_{e} edge pixels satisfying dist $<T_{d}$.

Step 5. If $n_{e} \geq T_{\nu}$, go to step 6. Otherwise, regard the possible ellipse as a false ellipse, return these n_{e} edge pixels into V, perform $f=f+1$; and go to step 2 .

Step 6. The possible ellipse $E_{i j k}$ has been detected as a true ellipse. Set f to be zero and go to step 2 .

4. Experimental results

We performed all the experiments on a Pentium IV 2.4 GHz computer using Matlab language. The first experiment is tested on the 580×480 synthetic images that are created by adding spiced salt noise at various levels to three original images. The original synthetic image with 1164 edge pixels and 6984 noise points is shown in Fig. 4(a), which consists of three separate ellipses with different directions. The original synthetic image with 959 edge pixels and 5754 noise points is shown in Fig. 4(c), which consists of three overlapped ellipses with different directions. The original synthetic image with 712 edge pixels and 4272 noise points is shown in Fig. 4(e), which consists of three overlapped elliptical arcs with different directions. The detected ellipses proposed by our algorithm are shown in Fig. 4(b), Fig. 4(d), and Fig. 4(f), respectively, where the broad lines in the image display the detected major axis and minor axis of the ellipses, from which we can see their intersections is the center of the ellipses, and the slope of the major axis is the tangent of the rotational angle of the ellipse. The estimated five parameters of the ellipses detected in images in shown in Table 1.

For the purpose of comparison, we apply the RHT, the CSA and our proposed RED to a typical image as shown in Fig. 4(a). We perform detection of an algorithm by adding

Table 1. The estimated five parameters of the ellipses detected in Fig. 4.

Parameters	u_{c}	v_{c}	M	N	$\theta\left({ }^{\circ}\right)$
Fig. 4(a)	371.4247	271.9050	79.8157	54.0932	89.9467
	371.0429	131.8847	81.2140	53.9996	50.0629
	227.2782	208.8658	81.1467	53.8514	0.2008
Fig. 4(c)	366.2288	203.4263	80.4720	53.9710	49.8350
	204.8841	227.0736	80.8179	53.8436	89.8228
	294.5926	263.0277	80.7442	54.0069	0.0321
Fig. 4(e)	261.3917	181.7210	80.2635	53.9371	-70.5887
	367.9825	254.7325	85.3853	52.9958	9.8093
	366.1103	140.1047	66.3604	42.5389	-41.1210

increasing noise to the original image and the number of the noise is one multiple to six multiple of the edge pixels. Every image with different multiple of noise is performed 200 times to test the tolerance of the algorithms to uniform. The accuracy reduces when the noise increases from low to high level. The result of the experiment is shown in Fig. 5(a), from which we can conclude that the accuracy of the RED is much higher than the RHT and the CSA.

The execution time required in each method is measured in terms of seconds and it is obtained from the average of 200 simulations. Figure 5(b) illustrates the execution time required in the related three methods against the number of multiple of noise to the edge pixels. It is observed that the execution time required in the proposed RED is smaller than the time in the RHT and the CSA.

The second experiment is carried out on real images captured by our vision system in the lab, which consisted of the VC-C4 camera with the resolution of 320×240, and the image board BT848. We use an image with several ellipse features as shown in Fig. 6(a) to measure the validity of our proposed algorithm. The detected ellipses and elliptical arcs are traced out with curves, while the detected ma-

Fig. 4. The experiment on the synthetic images with noises. (a) The image with three separate ellipses. (b) The detected ellipses of the proposed algorithm. (c) The image with three occluded ellipses. (d) The detected ellipses of the proposed algorithm. (e) The image with three intersected elliptical arcs. (f) The detected elliptical arcs of the proposed algorithm.
jor axis and minor axis are expressed with lines, whose intersection is the centre of ellipse, as shown in Fig. 6(b). The estimated five ellipse parameters are shown in Table 2.

Fig. 5. Percentage accuracy with multiple noises (a) and average computation time with multiple noises (b).

Fig. 6. Real image (a) and ellipses detected by the proposed algorithm (b).

Table 2. The estimated five parameters of the ellipses detected in Fig. 7.

Parameters	u_{c}	v_{c}	M	N	$\theta\left({ }^{\circ}\right)$
Ellipse 1	130.6774	125.6068	81.1252	38.4464	3.2145
Ellipse 2	133.5000	157.5221	78.9923	36.8724	1.0104
Ellipse 3	215.6895	45.8776	64.6687	13.3672	-11.1879

5. Conclusions

In this paper, a randomized algorithm based on the least square approach has been presented for the efficient detection of ellipses. The proposed algorithm is based on randomly picking three edge pixels that are the centre of three windows with the same size in the image, fitting ellipses to data points in these three windows by minimizing the algebraic distance, then randomly selects the fourth edge pixel and defines a distance criterion to determine whether there is a possible ellipse in the image. After we find a possible
ellipse, we use an evidence-collecting process to check whether the possible ellipse is a true ellipse or not. The proposed algorithm does not need to vote in the parameter space, so it indeed does not need any extra storage for representing the accumulator which is needed in the previous Hough transform based methods. Some synthetic images with different levels of noise and some realistic images that contain circular objects with some occluded ellipses and missing edges have been taken to justify the mem-ory-saving and computational advantages of the proposed algorithm. Experimental results demonstrate that the proposed algorithm is more accurate and faster than other methods in the literature.

References

1. N. Yamaguchi and H. Mizoguchi, "Robot vision to recognize both face and object for human-robot ball playing", IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Vol. 2, 999-1004 (2003).
2. G. Adorni, S. Cagnoni, and M. Mordonini, "Land-mark-based robot self-localization: a case study for the RoboCup goal-keeper", Int. Conf. on Information Intelligence and Systems, 164-171 (1999).
3. P.V.C. Hough, "Method and means for recognizing complex patterns", U.S. Patent 3069654, 1962.
4. Ch. The-Chuan and Ch. Kuo-Liang, "An efficient randomized algorithm for detecting circles", Computer Vision and Image Understanding 83, 172-191 (2001).
5. Ch. Cheng and Y. Liu, "Efficient technique for ellipse detection using restricted randomized Hough transform", Int. Con. on Information Technology: Coding and Computing, Vol. 2, 714-718 (2004).
6. R.A. McLaughlin, "Randomized Hough transform: better ellipse detection", IEEE Proc. on TENCON, Digital Signal Processing Applications, Vol. 1, 409-414 (1996).
7. R.A. McLaughlin, "Randomized Hough transform: improved ellipse detection with comparison" 19, 299-305 (1998).
8. H.T. Sheu, H.Y. Chen, and W.C. Hu, "Consistent symmetric axis method for robust detection of ellipses", IEE Proceedings on Vision, Image and Signal Processing 144, 332-338 (1997).
9. R. Halir and J. Flusser, "Numerically stable direct least squares fitting of ellipses", $6^{\text {th }}$ Int. Conf. in Central Europe on Computer Graphics and Visualization, (1998).
10. A. Fitzgibbon, M. Pilu, and R.B. Fisher, "Direct least square fitting of ellipses", IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 476-480 (1999).

Optics and Photonics
 Wiley
 www．wileyeurope．com

Silicon Photonics

An introduction
GHAFAM REED，University of Surrey，UK a ANDREW KNCHTS，HeHaster limiversity． Canads
Following a sympathetic tutarai apprcach，this first book on silicon
 photonics privides a comprotienswe Orbrview of the technology．5When＇ Photonics explains the cuncepts of the tectealogi，taking the reader through the intmductory prinoples，an to mure complex building blocks of the upmeal orcull Starting with the basics of wareguites ind the properties pecufar to silcon，the book also features
－Key devinir maxes in optical circiata
－Eaperimental methodi
－Evaluaran tuchniques
－Dperarise of waveguider tased divices
－Fabncation of silfcor maveguide cretuils
－Evaluation of silicun phatunic tyastems
－Vamenus moiket examples，models and case sturies

Integrated Photonics
 Fundamentals

carés LFANFE，Univernided Auntinume ite Madris，Tpuin
Writen in a highly accessibite and well liusuatad tarmat，tha book coversi
－The electromagnetic theory of syght
－The ory of integrated uptic waveguades
－Coupled mode tiseny and wineguide期位品
－Light propagation in wavepuities
$0-470-84968.5$ Jonusry 2003 HBH 198pp f45．00 eE7．50

Optics E Photonics

An Introduction
 Gokes unif thoownes An intmidection bringe thgether in ine booh both the basics of the sulpot ant an infirgduction to recerf developinienis and appitimions：Atfough ertiphasis is plateit on on understanding of the funfamentals，many diverse applicatans have treen inclated to high if th the rievance and erparsance of optics in everytay life．
Carefully stuctured，the reaber is led from
frst prokiplen and treulies trough to difinaction and jrupertes of
 and applications．
$0.471-49325-5$ 4prik2000 P2k 456pp 22995645.00

Total coverage of introductory photonics for students and engineers．．．
Elements of Photonics
Two Volume 5 et

 Canada
Thes tion vahume aet includes dscussyone of important tapics in Fourer opticspmperties of lenies，oprical image processing and folography on well as section on tive Geasslen liearn inght propagation in inssumpic meda，extemal field effects，and polarization of lign arud is mant Implicinions．Each clapter cuntams numernus examples and sample protbems ta alicidate the thateriat：
Wiley Series in fure and Applied Dpelcs
$0.471-41115$ \＆Jofy 2002 Mbk 1055pp ctise0etcsi．

Fundamentals of Photonics

 Madisocicusa A M．C．TEich，Columbis Undveraity，usa
 applications，toyerage indudes detaikd accounts of the pimary theories of Ight， inchuting ray aptits，wave aptics．
 eettrmmagnelic potich ind phocon aptics， as well as the imeraction of light with matter， and the theory of－emicurducter matenals and ther optical praperties．

Wivey Series in Furs and Appoied Opties

Place your advance order now to secure your copy．．．．．

Microwave Photonics

stavanos erekiel，Lherversity of Leshs，UK
－Puevides a broad overview of this developing sutject areap pruviding an atcresifit itherprehition ef the mathate iescarch manerial
－Bridges the fip betwetn miciuwave engineering and phofovic engiveering
－Presents mitrowave engineers with the means to understand the potential of the application of photone fechniques in microwive systems
$0.470-64854.5$ Auguit 2004 H2k 384 pp I60．00 e50．00

[^0]: *e-mail: longford@xjtu.edu.cn

