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A brief overview of recent results in the field of multidimensional spinning (vortex) optical solitons is given. We address the

stability problem of two- and three-dimensional spinning solitons in media with competing nonlinearities. We conclude that

these solitons could be stable, provided that their external size and power (energy) are large enough. The stability of

vorticity-carrying solitons is a generic feature of media with competing self-focusing and self-defocusing nonlinearities.
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1. Introduction

The optics of beams possessing phase singularities has be-

come a very active reasearch area in the last decade (for a

brief overview of nonlinear singular optics see, e.g. Ref. 1.

Optical vortices are lines of phase singularity, that is,

nodal lines where the intensity of the light, represented by a

complex scalar field, vanishes. These wavefront screw dis-

locations embedded in a host light beam behave like

charged particles: they may rotate around the beam axis,

repel or attract each other, or annihilate when colliding.

Therefore the optical vortex beams have attracted much at-

tention in the last years because of possible applications to

all-optical processing of information (for a recent review of

theoretical and experimental results in this field, see Ref. 2).

Other promising applications of optical vortices are trap-

ping and channeling of matter waves, as well as capture

and controlled transport of microparticles, which are

trapped by the dark (empty) core of the vortex beam [3], or

absorption of particles in spinning motion (by transfer of

the angular momentum from the beam) [4].

Very recently, formation of stable bright vortex solitons

(spatially localized vortex beams) was observed experi-

mentally, for the first time, in anisotropic photorefractive

media through self-trapping of partially incoherent light

carrying a phase dislocation [5]; experiments with unstable

vorticity-carrying localized beams were reported in both

c(2) crystals [6] and in media with a saturable nonlinearity

(a hot, dense sodium vapor) [7].

In fact, stability is a major concern for bright vortex

solitons, as, unlike their zero-spin counterparts, they are

prone to instability against azimuthal perturbations break-

ing the axial symmetry. A general problem in the study of

the azimuthal instability is that it is an oscillatory one, i.e.,

the associated eigenvalues are complex, and the instability

cannot be predicted by dint of known general principles,

such as the Vakhitov-Kolokolov stability criterion, which

applies to the case of real instability eigenvalues. In

two-dimensional (2D) and three-dimensional (3D) models

with quadratic nonlinearities, this instability was discov-

ered in simulations [8–10], and observed in the above-men-

tioned experiment in the 2D case [6]. As a result, a vortex

(spinning) soliton with vorticity S = 1 splits into three or

two fragments in the form of separating zero-spin solitons,

so that the initial intrinsic spin momentum is transformed

into the orbital momentum. Nevertheless, the c(2) non-

linearity acting in combination with the self-defocusing

Kerr, nonlinearity gave rise to the first examples of stable

spinning (ring-shaped) 2D solitons with S = 1 and S = 2

[11]. The stability of the spinning solitons in this model

may be realized as a result of competition between the

self-focusing and self-defocusing nonlinearities. This un-

derstanding is further supported by the fact that similar sta-

ble spinning solitons have also been found in another opti-

cal model featuring the competition between focusing and

defocusing nonlinearities, viz., the one based on the cu-

bic-quintic (CQ) nonlinear Schrödinger equation [12–18].

An important issue is to identify values of the spin S at

which the 2D vortex solitons may be stable. In the CQ

model, only stable solitons with S = 1 were originally iden-

tified [12]. Then, it was found that S = 2 vortices have their

stability region too [13–15]. Finally, it was demonstrated

that the vortex solitons in the CQ model may be stable with

the values of spin up to S = 5 [16]; quite plausibly, very

narrow stability regions exist for any value of S in the CQ

model. On the other hand, in the c c( ) ( ):2 3
- model stable

spinning solitons were thus far found only for S = 1 and

S = 2 [11], which suggests to seek for stable solitons with

S > 2 in this model too [19].

The most important aspect of the problem is to under-

stand whether the existence of stable spinning solitons with

higher values of S is a peculiarity of the CQ model, or a ge-

neric feature [20]. Recently, we have developed a qualitative

explanation for the stability of vortex solitons in media with

Opto-Electron. Rev., 13, no. 2, 2005 D. Mihalache 123

7th International Workshop on Nonlinear Optics Applications

OPTO-ELECTRONICS REVIEW 13(2), 123–127

*e-mail: dumitru.mihalache@ifin.nipne.ro



competing quadratic and cubic self-defocusing nonlinearities

[19]. A remaining challenge is the possible stability of

three-dimensional spinning solitons with S > 1 in media with

competing nonlinearities; recall that three-dimensional spin-

ning solitons (vortex tori) with topological charge S = 1 have

their stability region in such models [21–23]. A noteworthy

corollary of the stability results for S > 1 is that, in the mod-

els with competing nonlinearities, dark solitons with multi-

ple values of the topological charge, which may be consid-

ered as a limiting case of the bright ones with an infinitely

large size, are stable too (while in the well-known model

with the self-defocusing c -
( )3 nonlinearity, all dark vortices

with S > 1 are unstable [24]).

However, in media with competing nonlinearities, ro-

bust soliton complexes (in the form of “clusters” or soliton

“molecules”) composed by several nonspinning solitons

were introduced, too [25–28]. It was found that the cuasi-

stable propagation of such soliton clusters is a generic fea-

ture of media with competing nonlinearities (self-focusing

cubic and self-defocusing quintic nonlinearities or qua-

dratic nonlinearities in competition with self-defocusing

cubic nonlinearities).

This paper is organized as follows. In the next section,

we present simulations showing the stability of spinning

solitons and their resistance to the input random noise.

Also, a qualitative explanation of the stability of the vortex

(spinning) solitons, including the fact that the stability re-

gion exponentially shrinks with the increase of S is given.

In the last section we briefly present the conclusions.

2. Spinning solitons

Next, we restrict ourselves to equations describing the c(2)

coupling between the fundamental-frequency (FF) and sec-

ond-harmonic (SH) fields u and v in the presence of the

self-defocusing c(3) nonlinearity in the (2+1)-dimensional

geometry are well known [11,29–31]:
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Here, stands for the complex conjugation, Z is the propaga-

tion distance, Ñ 2 is the diffraction operator acting on the

normalized transverse spatial coordinates X and Y, and b is

a phase-mismatch parameter. Equations (1) assume that the

Poynting-vector walk-off between the harmonics is com-

pensated [31–32].

We look for stationary solutions to Eqs. (1) in the form of

u U r i Z iS v V r i Z iS= + = +( )exp( ), ( )exp[ ( )],k q k q2

where (r,q) are the polar coordinates in the plane (X,Y), k is

the wave number, and the integer S is the above-mentioned

spin. The amplitudes U and V may be assumed real, obey-

ing the equations
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where the prime stands for d/dr.

The dynamical Eqs. (1) conserve the total energy

(norm), the Hamiltonian, momentum (equal to zero for the

solutions considered), and angular momentum in the trans-

verse plane.

We have numerically found one-parameter families of

stationary 2D spinning solitons having a ring-like shape

with a hole in its center, which is supported by the phase

dislocation. To this aim, we solved Eqs. (2) using the stan-

dard band-matrix algorithm to deal with the corresponding

two-point boundary-value problem.

Obviously, the wave number k must exceed the cutoff

value, k k b³ º -cutoff max( , )0 2 , for the fields to be ex-

ponentially localized. For a fixed mismatch b, the station-

ary zero-spin and spinning solitons exist in a limited re-

gion, with k ranging from kcutoff up to a certain upper limit

(offset value) koffset, at which the soliton's power diverges

due to the divergence of its outer radius R, while the field

amplitudes U and V remain finite.

Further straightforward analysis of Eqs. (2) shows that

R diverges logarithmically at k koffset - ® 0,

R ~ ln[ ( )]1 k koffset - (3)

The stability results are summarized in Fig. 1, where

the continuous lines border the existence domain of the lo-

calized ring-shaped solitons, and the dashed lines are

boundaries between stable and unstable regions in the pa-

rameter plane (b, k). In regions A and D in Fig. 1, no local-

ized solutions exists: in region A – because the wave num-

ber k is below the cutoff, and in region D – because the

defocusing c(3) nonlinearity becomes dominant, preventing

the formation of solitons. For b < 0, there is a narrow strip

(region B in Fig. 1) where the zero-spin solitons exist but

are unstable. Stable zero-spinning and unstable spinning

solitons coexist in region C. Stable spinning solitons with

S = 1, S = 2, and S ³ 3 exist in small domains near the off-

set line (the continuous line separating regions C and D),

the dashed lines located near the offset line being bound-

aries of the stability regions for the spinning solitons. We

have found that, regardless of the value of the phase mis-

match, the spinning solitons with S = 3 and S = 4 are stable

in regions occupying @ 3%, respectively @ 1.5% of their ex-

istence domain.

However, one can assume that, very generally speak-

ing, the spinning soliton is not an absolutely stable object,

but rather a metastable one. Indeed, the energy of the spin-

ning soliton is larger than that of its zero-spin counterpart,

hence it might be possible that a very strong initial pertur-

bation will provoke its rearrangement into a zero-spin

Stable spinning optical solitons in two and three dimensions

124 Opto-Electron. Rev., 13, no. 2, 2005 © 2005 COSiW SEP, Warsaw



soliton, the angular moment being carried away with emit-

ted radiation. In terms of this consideration, it appears that

the S = 1 and S = 0 solitons are separated by extremely high

potential barriers, which make the assumed process practi-

cally impossible. To illustrate this point, in Fig. 2 we show

the cross sections of the S = 1 soliton which was very

strongly perturbed at the initial point, Z = 0 (the perturba-

tion is about 30% of the soliton's amplitude), and the result

of its evolution at the point Z = 200. For the same case, the

comparison of the distributions of the intensity and phase

inside the initial strongly perturbed soliton and the finally

established one are shown in Fig. 3. As is obvious from

Figs. 2 and 3, the soliton was able to completely heal the

damage, remaining a truly stable object.

A simpler but more general analysis may be based on

considering the vortex soliton as a two-dimensional “liquid

drop” of the annular shape, with inner and outer borders

(for more details see Ref. 19). Then, an obvious stability

criterion is the minimization of the “surface tension”, i.e.,

of the total length (perimeter) of the borders (the total area

of the drop, or of a set of secondary drops into which the

original unstable one may split, as shown above, is approx-

imately conserved due to the power conservation). The

outer and inner radii of the annulus being R [see Eq. (3)]

and r, its area and perimeter are S R= -p r( )2 2 ,

L R= +2p r( ). If the annular drop is unstable against split-

ting into n round-shaped ones with the radius
~
R, the area

conservation yields
~

( )R S n= p . Accordingly, the total

perimeter of the set of the secondary drops is l Rnº 2p~
.

As it follows from these equations, the ratio of the perime-

ters of the spl i t and unspl i t configurat ions is

l L n R R= - +( ) ( )r r .

An obvious consequence of the above estimate is that

the condition l/L > 1, which implies absolute stability of

the annulus against the splitting into n drops, is

R n n> + -( ) ( )1 1r . The strongest condition following this

relation corresponds to n = 2 (recall that the exact numeri-

cal results demonstrate that the instability mode with the

azimuthal index n = 2, which implies the beginning of the

splitting into two fragments, is indeed the most persistent

one), giving the estimate R > 3r. For k sufficiently close to

koffset, r depends only on the vorticity S of the annular

soliton, while R may be indefinitely large, depending on

the soliton's power. Thus, the above condition predicts that

the vortex solitons of a sufficiently large size may indeed

be stable against the splitting.

Further, to estimate the dependence of the stability re-

gion on S, we may use a crude estimate for r, following
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Fig. 1. Existence and stability domains for bright fundamental and

vortex solitons with S = 0, 1, 2, and 3. The upper continuous curve

separating the domains C and D is their common existence border,

corresponding to infinitely broad solitons. The stability region of

the vortices with S = 4, which is very narrow, is explained in the

text.

Fig. 2. Cross sections of an S = 1 soliton that was strongly perturbed

at Z = 0, and the result of its evolution after having passed the

propagation distance Z = 200.

Fig. 3. The recovery of the soliton with the spin S = 1 in the same

case as in Fig. 2.



from the matching of the asymptotic form of the solution

valid for r ® 0. This procedure predicts the following de-

pendence of the hole's radius on large values of S,

r r= 0 S, (4)

with the constant r0. The fact that the model must be based

on competing self-focusing and self-defocusing nonline-

arities implicitly comes into the play at this stage of the

consideration, as otherwise the quasi-flat field in the inner

region of the annulus would be subject to the modulational

instability.

Finally, we predict that the relative size of the stability

region for the vortex solitons shrinks, with the increase of

S, as

( )Dk k offset ~ exp ,-C S2 (5)

with a certain constant C2, depending on the dimension of

the model (D = 2 in our case), see Ref. 19. In fact, the pre-

diction of Eq. (5) is universal (model-independent), while

C2 may depend on parameters of the particular model, such

the mismatch constant b in the present model with compet-

ing quadratic and quintic nonlinearities. Note that a similar

analysis for the case of three-dimensional spinning solitons

gives us an estimate of the stability region which also

shrinks exponentially as ( )-C S3 .

3. Conclusions

In this work, we have briefly reviewed the problem of sta-

bility of vortex solitons in two-dimensional media combin-

ing competing nonlinearities. The model describes propa-

gation of localized beams with intrinsic vorticity S in the

bulk optical medium. An earlier established result was that

the vortex solitons with S = 1 and S = 2 could be stable,

provided that their external size and power are large

enough, but it was assumed that all the higher-order

solitons with S ³ 3 would be unstable. In contrast with this,

it has recently been found that in another model, with the

cubic-quintic nonlinearity, solitons with S > 2 had their

(narrow) stability regions too. We have demonstrated that

the same is true in the c c( ) ( ):2 3
- model too. In particular,

the S = 3 and S = 4 solitons are stable in regions which oc-

cupy, respectively, @ 3% and 1.5% of their existence do-

main [19]. Solitons with still larger S also have very narrow

stability regions. These results were obtained by means of

calculation of the stability eigenvalues, and checked in di-

rect simulations. It has also been demonstrated that the sta-

ble solitons are truly robust, readily self-trapping from a

rather arbitrary initial beam with the embedded vorticity,

and easily cleaning themselves from large random pertur-

bations. Besides the numerical results, we have also pro-

posed a simple qualitative explanation for the stability of

the broad vortices against splitting into a set of zero-spin

solitons. In particular, this analysis predicts that, for large

S, the width of stability region shrinks exponentially as

( )exp -C S , where C is a constant depending on the con-

crete model and on the dimension D. Thus, we conclude

that the stability of higher-order spinning solitons is a ge-

neric feature of optical media with competing self-focusing

and self-defocusing nonlinearities.
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