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In the paper, propagation of spatio-temporal pulses (light bullets) in inhomogeneous, Kerr-like nonlinear medium is consid-

ered. For ultra-short bullets the higher-order nonlinear effects – self frequency shift and nonlinear dispersion together with

saturation of nonlinear susceptibility are taken into account. The equations describing evolution of temporal and spatial

width of the bullet parameters are derived. The stationary solutions of these equations are found analytically. Small oscilla-

tions around the stationary bullet’s widths are considered and frequency oscillations are obtained. The regime of stable os-

cillations is discussed.
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1. Introduction

Localized in time and space optical pulses – light bullets
are the objects of increasing interest in telecommunication
systems. Such bullets transmitted for long distance can be
treated as bits of information. But two fundamental optical
effects diffraction and dispersion broaden the pulses what
can cause losses of information. In nonlinear Kerr medium,
however, the additional effect of self phase modulation
(SPM) can diminish or even completely suppress disper-
sion or diffraction [1–3]. In pure Kerr medium, such a bal-
ance between SPM and dispersion or SPM and diffraction
occur in 1 1+ dimensions. Nevertheless, the suppression of
both diffraction and dispersion in 3 1+ dimensions is possi-
ble. Such a total compensation of two effects causing
broadening of the pulse can be achieved in Kerr-type satu-
rable media when propagating fields are sufficiently strong
[4–6].

In linear telecommunication lines, spatial broadening of
the pulse in 3 1+ dimensions is suppressed otherwise, by
means of appropriate distribution of linear refractive index.
Additionally, if temporal broadening caused by dispersion
is compensated by nonlinearity of the medium, we obtain
light bullets that can propagate in the nonlinear Kerr me-
dium without saturation [1] or when saturation of the me-
dium is quite weak. This case we meet in practice even for
ultra-short pulses. However, describing propagation of
such pulses we should take into account a few additional
higher order effects. Let us neglect the linear effect of the
third order dispersion, it complicates calculations very
much. Nevertheless, we will consider two other effects,

both nonlinear, nonlinear dispersion (ND) and self fre-
quency shift (SFS, nonlinear Raman effect) [1,7–10].

Unfortunately, the higher-order nonlinear Schrödinger
equation (HONSE) describing propagation of the pulse en-
velope [8–10] has no analytic solutions if we assume
(3 1+ )-dimensional case, linearly non-uniform medium,
saturation and higher-order nonlinear effect. Even numeric
solution of such an equation in (3 1+ )-dimensions is diffi-
cult and time-consuming. Nevertheless, using a sort of
variational method [4,10–15] we can obtain an approxi-
mate solution of this equation. This method applies
Lagrange equations formalism and is very convenient be-
cause we can assume a given input field and follow the
changes of field’s parameters during propagation. This
method of investigation was applied to light bullets in
graded-index Kerr medium [15], but the case considered in
our case has been never analysed.

2. Propagation of light bullets in generalized
nonlinear media

Let us consider an optical pulse travelling along the z-axis in
the infinite nonlinear Kerr-like medium. The pulse envelope
is described by the function U(x,y,z,t) slowly varying in time
and along the propagation direction. In the medium with lin-
ear refractive index n(w), the numeric value of group velocity
dispersion coefficient k2 = d2[wn(w)/c]/dw2, taken for the car-
rying frequency w, determines whether temporal width of the
pulse increases during propagation (k2 ¹ 0) or not (k2 = 0).
Another effect – dispersion increases the transverse widths of
the pulse in x and y directions but this effect acts ever in lin-
ear, uniform medium.
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Let the pulse propagates through a nonlinear Kerr-type
medium with nonlinear part of permittivity depending on

the field intensity e eNL NL U x y z t= ( ( , , , ) )
2

. In this case,

the pulse envelope satisfies (3 1+ )D nonlinear Schrödinger
equation [1,4,6,15]. To suppress dispersion, suppose that
the linear part of the medium permittivity eL = n2(w) cre-
ates a sort of trap for the pulse. Such a trap can be formed
by a proper transverse profile of the function eL = eL(x,y).
In order to perform analytic calculation let us assume the
square graded-index profile. Moreover, for the convenience
let us introduce the factor 2/k multiplying the nonlinear
permittivity function eNL. As a result, the total permittivity
will be expressed by the function
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The above form generalizes permittivity considered by
Raghavan et al. [15] into the case of non-Kerr, but
Kerr-like media. The nonlinear permittivity describing sat-
uration of nonlinearity in cubic-quintic model [4,6] gives
eNL in the form
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The parameter Is estimates the strength of the field for
which saturation should be taken into account. In the pure
Kerr medium Is = ¥, but even for the considered strong
fields we shall assume U Is

2 << . The equation describing
propagation of the pulse envelope U(x,y,z,t) in a frame
moving with the group velocity 1/k1 =1/{d[wn(w)/c]/dw}
is called (3 1+ )D higher-order (generalized) nonlinear
Schrödinger equation (HONSE)
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Two nonlinear higher-order effects, i.e., nonlinear dis-
persion and self frequency shift are included in two last
terms of this equation. The parameter g before these terms
specify the magnitude of both higher-order effects while
relation between them: k = 1 for ND only and gk ® const

for g ® 0 if ND vanishes. The form of Eq. (3) generalizes
and combines equations considering in many papers
[4,6,10–17].

To find an approximate solution of Eq. (3) describing
light bullet let us write the Lagrange density function
equivalent to HONSE Eq. (3). After calculation we can
convince that this function has the form
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where F(U 2 ) is an integral of nonlinear permittivity func-

tion [4,16–17]

F U I dI
U U

I
NL

U

s

( ) ( )2

0
2

4 6
2

2 3
= = -

æ

è
ç
ç

ö

ø
÷
÷òe e . (5)

The last part of this formula contains a form of the

function F(U 2 ) specific for cubic-quintic nonlinearity,

Eq. (2).
We assume the trial function U(x,y,z,t) describing enve-

lope of the bullet in a form of the product of two terms, one
depending on the transverse coordinates (x,y) but not de-
pending on the time t and the other, depending on t but not
on x and y, U(x,y,z,t) = R(x,y,z,t)u(z,t). The first function in
this product R(x,y,z) is the solution of the transverse part of
Eq. (3) that is the solution of equation describing propaga-
tion of the field in linear self-focusing medium. Solving
this equation we obtain gaussian beam of the constant
width a(z) = 1/W, R(x,y,z) ~ exp[–W2(x2 + y2)/2] [18]. Sim-
ilarly, we can also write a solution of the longitudinal part
of Eq. (3), i.e., (1 1+ )D HONSE. This equation was consid-
ered in Refs. 16 and 17 and has the solution for any dielec-

tric function eNL(U
2 ). Nevertheless, the general solution of

this equation can be written only in quadrature, for the con-
sidered case I s ® ¥ and small higher terms of this quadra-
ture gives the explicit formula. The obtained profile of the
bright soliton is similar to that in Kerr medium:

u z t t T( , ) ~ [cosh ( ) ]2 21 + s . The broadening parameter s
appearing here is small, it depends on the small g2 and 1/Is
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This parameter describes deviation of the shape of soliton
in Kerr-like saturable medium with ND and SFS from the
Sech profile. For s > 0, the resulting solitons are higher
and shorter than solitons propagating in pure Kerr medium,
for s < 0 this relation is inverse.
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The form of transverse and longitudinal solutions sug-
gests taking the trial solution of Eq. (3) describing (3 1+ )D
light bullet as
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In the above formula, P0 is the total power carried by the
bullet
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and the broadening parameter s is given by exactly the
same Eq. (6) as in the soliton case. Nevertheless Eq. (7) is
constructed from exact solutions of two parts of Eq. (3), it
does not satisfy its full form, Eq. (3). Therefore both the
temporal and spatial widths T and a together with the
broadening parameter s should change during propagation
T = T(z), a = a(z), and s = s(z). Consequently, similar
terms changing with z will appear in the phase F(x,y,z,t) of
the bullet. We shall assume three such terms, two of them
describe gaussian curvature and chirp while the third one
all other effects influencing the phase but independent on x,
y, and t
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with a = a(z), q = q(z), and j = j(z). The first term in Eq.
(9) approximates the phase of bright soliton in Kerr-like
medium with ND and SFS [17].

The Lagrange density function L with U(x,y,z,t) given
by Eq. (7) can be integrated over x, y, and t. Doing so we
obtain the Lagrange function L depending only on z
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where prime ¢ denotes differentiation with respect to z.
Treating f(z), a(z), T(z), a(z), and q(z) as a set of general-
ized coordinates of the bullet we can write the Eu-
ler-Lagrange equations describing their evolution, i.e., the

propagation. In this way, we shall derive five coupled
first-order differential equations. It can be proved that the
function f(z) does not appear in any of the obtained rela-
tions, the corresponding Euler-Lagrange equation simply
states 0 = 0. Moreover, the phase terms a(z) and q(z) and
their derivatives can be eliminated from the other four rela-
tions giving two second-order differential equations for
temporal and spatial widths T(z) and a(z)
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Derived system of equations, Eq. (11), with the tem-
poral broadening parameter s, expressed by Eq. (6), con-
stitutes the basis of further analysis of bullet’s propaga-
tion in saturable medium with ND and SFS. The equations
are fairly complicated, but their complexity is caused
mainly by corrections that appeared because of saturation
and higher-order effect. But the main profit achieved us-
ing Eq. (11) is the possibility of tracing the changes of
these parameters of the bullet that have simple physical
interpretation, what contrasts with description given by
nonlinear Schrödinger equation. However, solving
HONSE Eq. (3) we obtain the exact shape of an envelope,
even having such a shape we cannot determine how the
bullet widths evolve. Therefore description based on
Lagrange Eq. (11) give us supplementary insight into evo-
lution of the bullet.

3. Stationary propagation and small oscillations

Generally, the temporal and spatial width of light bullet
change as the bullet moves through the medium. Neverthe-
less it is possible to fit these quantities in such a way, that
they will remain constant during propagation. These sta-
tionary values T0 and a0 will be a solution of two algebraic
equations obtained from Eq. (11) for vanishing the deriva-
tives T¢(z), T¢¢(z) and a¢¢(z). The first equation obtained in
this way will contain only two significant terms [the third
and the fourth one in the first line of Eq. (11)], all others
will be small corrections appearing because of saturation
and the higher order effects. That is why we can solve this
equation obtaining the stationary temporal width T0 as the
explicit function of the spatial width a0
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This value introduced into the second equation of Eq. (11)
for the stationary state Tz(z) = T0 and a(z) = a0 gives the re-
lation satisfied by the spatial stationary width a0
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The last terms in both Eqs. (12) and (13) express small
corrections caused by saturation and higher order terms in
HONSE. Without these corrections both Eqs. (12) and (13)
have the same form as equations given in Ref. 15 describ-
ing stationary widths of light bullets in pure Kerr medium.

As equation determining a 0
2 , Eq. (13) is the perturbed

cubic algebraic equation. Nevertheless its solution can be
written explicitly, its form is so complicated that we will
not write it. Instead, we draw a0 together with T0 given by
Eq. (12) versus the power P0 carrying by the bullet (Fig. 1).
The four lines for each of the curves a0(P0) and T0(P0) have
been obtained for different values of the material coeffi-
cients Is and g (k = 4 in all these cases). One of the lines is
drawn for the pure Kerr medium (Is = ¥, g = 0), two other
for the case of saturable medium without the higher order
terms and generalized medium without saturation and the
fourth one exhibit simultaneous influence of all considered
effects. As we can see, increase in power carrying by the
bullet gives significant decrease in its temporal width, this
property is very important in view of the potential. Note
that for the bullets with short temporal width in the regime
of high power, influence of the higher order terms can be
very significant, even very small values of the coefficient g
give quite large decrease in the bullet’s temporal width.
Unfortunately, the sign of this change depends on relation
between two higher order terms in HONSE (controlling by
k) and power of the bullet P0. Moreover, the large value of
DT compared with T0 means that we are outside the regime
of applicability of used approximations. Nevertheless nu-
merical solutions of exact equations confirm that for many
cases we can obtain significant decrease in bullet temporal
width due to the higher order terms in HONSE.

Note that positive values of stationary temporal width
can be obtained only when k2/e2 < 0, it is the same condi-
tion that allows for solitons existence in pure Kerr medium.
But the signs of k2 and e2 have fundamental significance
when we try to solve Eq. (13) and analyse behaviour of its
solution in the limit W ® 0. In the case of the focusing me-
dium e2 > 0 and the regime k2 < 0, Eq. (14) has finite solu-
tion a0 (for finite power of the bullet P0) even in the lin-
early uniform medium W = 0. Unfortunately, these solu-
tions are unstable with respect to small perturbation. There-
fore we will assume the case of defocusing medium e2 < 0
with the positive group velocity dispersion k2 > 0 (Fig. 1).

This choice of signs causes that light bullet tends to soliton
of constant temporal width in the limit W ® 0. The spatial
width of the bullet approaches infinity but the product Wa0

remains constant. Power of the bullet P0 also increases infi-
nitely P0 ~1/W2. This behaviour of solutions can be identi-
fied in Fig. 1. The limit W ® 0 results when horizontal co-
ordinate increases infinitely.

Having stationary solutions of Eq. (11) we can also de-
scribe propagation of light bullets if its temporal and spatial
width slightly deviates from the stationary value
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The above widths introduced into Eq. (11) give two equa-
tions describing evolution of the deviation functions dT(z)
and da(z). Assuming these deviations to be small we can
neglect all the terms containing the second and the higher
powers of dT(z), da(z) and their products in the obtained
expressions. As a result of this procedure we get the
linearised equations of the form
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with MTT, MTa, MaT, and Maa being the functions of the sta-
tionary values T0 and a0
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Fig. 1. Stationary propagation in media with e2 < 0, k2 > 0, k = 4.
The temporal and spatial widths T0 and a0 as functions of the power

P0 carrying by the bullet.



where mTT, mTa, maT, maa, lTT, lTa, and laT are the certain
quite complicated coefficients describing the first-order
corrections.

Two equations of Eq. (15) describe small variations of
bullets parameters. But a form of these equations enables
us to interpret the changes of widths appearing during
propagation as vibrations in a system of two coupled oscil-
lators. In such a system, both oscillators vibrate with the
same frequency and, in general, their vibrations are
superpositions of two normal oscillations. Assuming a so-
lution of equations system (15) in the form
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with dT(0) and da(0) defined by the initial conditions, we
can find frequencies of normal oscillations
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Introducing here Mij(i,j = T,a), expressed by Eq. (16), we
can check that –(MTT + Maa)/2 > 0, for e2 < 0 and k2 > 0 the
expression inside the square root symbol can be positive or
negative, but nevertheless (MTT + Maa)2 ³ (MTT – Maa) +
4MTaMaT. Therefore in a system described by Eqs. (15),
two or none normal oscillations appear, however, this con-
clusion is valid only for e2 < 0 and k2 > 0 and small
changes caused by saturation and higher-order effects.

Figure 2 illustrates the relation between the frequencies
of Eq. (18) and the power carrying by the bullet P0 [Eqs.
(12) and (13) are used to express a0 and T0 as the functions
of P0]. We can see the two ranges of bullet’s power for
which oscillations can exist separated by wide gap between
them. Oscillating bullets with the power corresponding to
lower regime resemble gaussian beam – they possess large
rather temporal width (see Fig. 1) and quite narrow waist.
Therefore much more interesting is the upper regime of
possible solutions corresponding to the parameters charac-
terizing short bullets. One can observe, that one of the fre-
quencies in this regime increases significantly with increas-
ing power of the bullet.

In Fig. 3, we can see oscillations of the bullet resulting
when we solve HONSE Eq. (3) numerically without any
additional approximations for the parameters almost corre-
sponding to that used for drawing the dotted lines in Figs. 1
and 2. The obtained changes of both widths are periodic
and during the normalized distance Wz = 100 both widths
perform the same number of full periods of changes. The
bullet power is P k k0 2 250= p e( ) W in the normalized
units, what corresponds to the value not far from vertex of
this line, however, one of the resulting frequencies is more

than two times greater than the other. Note that the mean
value of each width well corresponds to the values obtained
from Fig. 1 for an appropriate power.

For the parameters of the bullet, corresponding to the
values lying inside this gap in Fig. 2, the oscillations will
be unstable. This unstable behaviour we can observe in
Fig. 4. The bullet performs a few quite irregular oscilla-
tions and after them a temporal width increases infinitely.
As a result, the bullet transforms into a gaussian beam
propagating along the z-axis with regular, sinusoidal oscil-
lations. The period of these oscillations obtained using nu-
merical data equals p (in normalized units) what exactly
gives the value characteristic for oscillation of gaussian
beam in self-focusing medium.

4. Conclusions

Small oscillations of light bullet propagating in non-uni-
form cubic-quintic saturable medium with higher order
nonlinear effects can be described analytically. The de-
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Fig. 2. Small oscillations around the stationary state. Periods of the
normal oscillations f as a function of the power P0 carrying by the

bullet.

Fig. 3. Numeric solutions of the evolution equations. Case of stable
propagation.



scription is based on Lagrange formalism and demands ex-
istence of stationary states, for which the bullet propagates
without any changes. Both spatial and temporal widths of
the bullet oscillate in the same manner. The amplitude of
the field also oscillates and its value is adjusted so, that the
power carrying by the bullet remain constant. Even if a
magnitude of oscillations is not very small, the description
is quite good.

The higher-order effects change both temporal and spa-
tial width of the stationary bullet and for large power of the
bullet even for small values of the higher order terms the
resulting change can be quite large. In this way we can ob-
tain a significant decrease in the bullet temporal width.

The relation frequency of oscillation versus bullet’s
power gives two possible values of frequency correspond-
ing to any value of the power, but certain regime of the
powers is forbidden. The forbidden regime covers all val-
ues of the power for media with the positive nonlinearity
e2 and the negative group velocity dispersion k2, while for
the media with negative e2 and positive k2 we meet a finite
gap. For the powers from the forbidden regime, the oscil-
lations of bullet are unstable. The gap became narrower in
saturable media and media exhibiting the higher order
nonlinear effects. These effects change also the frequen-
cies of oscillations. The frequencies corresponding to the
lower band change only slightly, but the frequencies in
the higher band change quite well even for small higher
order effects.
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Fig. 4. Numeric solution of the evolution equations. Case of
unstable propagation.


