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Propagation of optical beams and properties of one-dimensional (1D) spatial solitons in biased photorefractive media with

quadratic electro-optic effect are analysed. An exact analytic solution of the corresponding propagation problem is presented

as well as a numerical investigation of the evolution of optical beams.
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1. Introduction

Intensive studies of physical mechanisms leading to
self-trapping of light have given rise to a great deal of non-
linear media which can support spatial solitons. Among
many branches of these media, materials with saturable
form of nonlinearity have found a growing interest in the
past few years. Most of works in this domain are dedicated
to the crystals with quadratic nonlinearity [1], saturable
atomic vapours [2] and photorefractive materials [3,4].
However, in spite of considerable theoretical research, only
in sparse cases self-trapping of light can be described by
exact solvable models. Interesting form of saturation, lead-
ing to exact analytic solution of the corresponding propaga-
tion equation, has been proposed by Królikowski and Lu-
ther-Davies [5]. It turns out, that a modified form of this
kind of nonlinearity can be used to analytical description of
spatial solitons in photorefractive materials with quadratic
electro-optic effect.

The refractive index change, produced by the quadratic
electro-optic response to a photoinduced electric field, oc-
curs, e.g., in centrosymmetric photorefractive materials [6].
This feature contrasts centrosymmetric media with their
conventional noncentrosymmetric counterparts and makes
them attractive, because of large attainable change in a re-
fractive index. Up to now, photorefractive spatial solitons
have been observed only in one material with this kind of
nonlinearity, potassium lithium tantalite niobate (KLTN)
[7], which was specially treated to have a first-order ferro-
electric-paraelectric phase transition slightly below a room
temperature. However, besides KLTN, photorefractive
multiple quantum well (PRMQW) slab waveguide has
been proposed to support spatial solitons at near-resonant
wavelength [8]. In this case quadratic response to the elec-

tric field compensates tiny electro-optic coefficient, which
is a general drawback of semiconductors, and permits
self-trapping of light in materials which are much faster
than other photorefractives.

Here, we analyse properties of one-dimensional (1D)
spatial solitons within photorefractive media with quadratic
electro-optic response. Because in Ref. 6 only numerical
approach has been used, we develop analytical solvable
model similar to the one proposed in Ref. 5 to describe
propagation of light in such systems. Furthermore, we in-
vestigate numerically evolution of 1D Gaussian beams in
these media and notice recurrent changing of their shape,
similar to reported for conventional, nonitegrable form of
photorefractive nonlinearity [9,10]. Simple numerical in-
vestigation of losses influence on soliton propagation is
also made.

2. Theoretical model

We consider the externally biased photorefractive medium
with the electric field applied along the x-axis. The electric
field of 1D monochromatic optical beam, propagating
along the z-axis can be expressed as

E x z t A x z i t ikz c copt ( , , ) ( , )exp( ) . .= - +w , (1)

where k is the wave number, w is the frequency, A(x,z) rep-
resents the slowly varying envelope which fulfils standard
paraxial wave equation
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where n0 describes unperturbed refractive index and x is the
direction in which the beam diffracts. We assume the re-
fractive index change proportional to the square of the elec-
tric field E
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where s is the quadratic electro-optic coefficient. Although
the mentioned previously materials greatly differ in their
physical properties, the local relation between internal elec-
tric field and light intensity for centrosymmetric medium
[6] and PRMQW structure [8] can be estimated with the aid
of the same formula
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where E0 denotes the value of the externally applied elec-
tric field, I A= 2 is the light intensity and I¥ is the inten-
sity of the light at infinity (x ® ±¥). The dependence of
the equivalent dark irradiation Id on material parameters is
the only distinction between considered materials, coming
from differences in transport models.

Substituting Eqs. (4) and (3) into Eq. (2) and introduc-
ing dimensionless variables, X = x/w0, x = z/(kw0

2 ) and F =
A/Id

1/2, with an arbitrary scaling parameter w0, one obtains
the following dimensionless equation
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Because of quadratic relation between the refractive in-
dex change and the electric field E, the polarity of biasing
field has no influence on the kind of nonlinearity (self-fo-
cusing or self-defocusing). Only the sign of quadratic elec-
tro-optic coefficient included in g determines a type of the
refractive index change (negative or positive) and therefore
a type of possible soliton solution (bright or dark).

3. Bright soliton solution

For the self-focusing nonlinearity the optical beam inten-
sity is expected to vanish at infinity and Eq. (5) takes the
form
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We look for a stationary bright soliton solution of Eq.
(7) in the standard form

F G( , ) ( )exp( )X u X ix x= , (8)

where u(X) is the real function and G is the soliton propaga-
tion constant. For such localized solutions, Eq. (7) can be
integrated once, leading to

G = -
+

g

1 0
2

u
, (9)

du

dX u
u

u u

u

æ
èç

ö
ø÷ =

+

-

+

æ

è
çç

ö

ø
÷÷

2

0
2

2 0
2 2

2

2

1 1

g

( )
, (10)

where u0 = u(X = 0). In the consequence of final integration
we obtain
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where r = u2. Equation (11) describes a profile of bright
soliton propagating in the photorefractive medium exploit-
ing quadratic electro-optic effect. The choice of the
dimensionless variables permits to identify the scaling pa-
rameter w0 with the beam radius. Thus, the axial coordinate
is normalized to the diffraction length and the field distri-
bution fulfils the condition

r
r

( )X = =1
2
0 , (12)

which substituted in Eq. (11) gives the relation between the
peak intensity and g parameter
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Because g is the only parameter of Eq. (7), Eq. (13)
shown in Fig. 1 may be treated as an existence curve. As it
is apparent from Fig. 1, solitons of the same value of g can
be found for two different peak intensities r0. This feature
has been denoted as the soliton bistability [11,12]. More-
over, soliton solutions exist only for g parameter larger
then the critical value gcrt »1.393. For the minimal value of
g, a single soliton solution exists at the peak intensity r0min

»1.12. The critical parameter gcrt is related with a minimum
soliton width which is described by

w
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g
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One of the primary parameters, measured during the
solitons experiments is the full width at half maximum
(FWHM) of the soliton intensity. In the considered case,
FWHM has an analytical form
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which directly follows from the definition of g, Eq. (6).

In Fig. 2, two soliton profiles of high and low intensity
for g = 2.5 are depicted. Dotted curves in this figure repre-
sent Gaussian shapes with the same powers as correspond-
ing solitons.

The soliton power, defined as

P x dx=
-¥

¥

òr( ) , (16a)

can be found from Eq. (10) in form
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As it can be seen, high intensity solution has higher peak
intensity and low intensity solution has lower peak intensity
than the corresponding Gaussian shapes. The results are sim-
ilar to those presented in Ref. 9, for conventional (exploiting
linear electro-optic effect) photorefractive medium.

With help of Eqs. (16b) and (9), a simple proof for the
stability of considered soliton solution can be performed. It is
known that bright solitons are stable if dP/dG > 0 and unstable
otherwise [13]. In Fig. 3, the dependence of the soliton power
on the propagation constant is plotted. As one can see, the
power is a monotonically increasing function of the propaga-
tion constant, indicating that the solitons are stable.

4. Beam evolution

4.1. Influence of the initial shape on the beam
propagation

The evolution of a beam shape has a fundamental impor-
tance for practical implementation. It is well known, that in
Kerr media 1D beams with arbitrary initial shape and suffi-
cient power converge to soliton solutions. However, mate-
rials exploiting different type of nonlinearity can show dif-
ferent behaviour. Thus, taking advantage of beam propaga-
tion method and the results of sec. 3, we studied the evolu-
tion of soliton and Gaussian (laserlike) beams in consid-
ered medium.
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Fig. 1. Relation between the nonlinear parameter g and peak
intensity (existence curve) for bright solitons.

Fig. 2. Comparison between soliton profiles (solid curves) of high
intensity (a) and low intensity solution (b) for g = 2.5 with the
corresponding Gaussian shapes of the same power (dotted

curves).

Fig. 3. Soliton power P as a function of propagation constant G.



First, using finite difference method we integrated Eq.
(7) for the exact soliton solution as an initial shape and
checked its evolution. As expected, the beam parameters as
amplitude and width, remained invariant with propagation
distance. Subsequently, we studied the evolution of Gaussi-
an beam with the soliton power obtained for g = 2.5, the re-
sult for high intensity solution is depicted in Fig. 4. As it
can be seen, the beam parameters do not remain invariant
with propagation distance. Beam does not converge to a
perfect soliton as for Kerr nonlinearity, but shows small os-
cillation around the soliton parameters. This recurrent mo-
tion occurs both in high and low intensity case, as well as
for pulses with different power. Figure 5 shows these oscil-
lations for g = 2.5 and four different powers. In Fig. 5(a),
the oscillating amplitude r0(x) of the initial Gaussian beam
with the power of low intensity solution (PL = 0.5) is de-
picted, Fig. 5(c) presents similar dependence for the power
of high intensity case (PH = 11.6). As it can be seen, in low
intensity case, amplitude of the oscillations decreases but in
spite of long propagation distance we did not notice perfect
converge to a soliton shape. The smaller amplitude and de-
caying of oscillations are connected with the fact, that the
amplitude of low intensity solution for the considered g is
close to the region described by Kerr nonlinearity. Figures
5(b) and 5(d) show respectively, propagation of a Gaussian
beam with the power P = 5.5, which is between low and
high intensity solutions and evolution of a Gaussian beam
with the power P = 25, above high intensity solution.

Although, in simulations performed for a moderate
value of g = 2.5, the beams change their form periodically,
in case of the larger g more complicated recurrent behav-
iour can occur. In Fig. 6, the evolution of Gaussian beams
with power of high intensity solution for several values of
g is presented. It is clearly seen that optical beams with the
higher values of g [Figs. 6(b) and (c)] exhibit more compli-
cated oscillations with more than one characteristic period.
We found that such quasi-periodic oscillations of Gaussian
beams appear for all high intensity cases with g value
larger then about 4.

The results presented in this section permit to separate
three regions of bright soliton intensities in which the evo-
lution of optical beams proceeds in different manner.
Starting with low intensities and high values of g on the ex-
istence curve (Fig. 1), we have in sequence: region of low
intensities, where arbitrary initial distribution converges to
a soliton behaviour like for Kerr nonlinearity, range of
moderate intensities and the moderate g, where arbitrary
initial shape leads to a periodic oscillation, and finally re-
gion of high intensities where deviation from soliton pro-
file leads to quasi-periodic evolution of optical beams.

It is noteworthy, that oscillating behaviour of solitons
has been investigated analytically in the framework of the
concept of the soliton internal mode [14]. Furthermore,
long-lived oscillating states have been presented in numeri-
cal simulations of the dynamics of optical beams in several
different systems such as nonlinear quadratic media [15,16]
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Fig. 4. Evolution of a beam with Gaussian input shape and the same
power as the high intensity soliton solution for g = 2.5.

Fig 5. Oscillating amplitude of a beam with Gaussian input shape
(solid curves) and steady-state soliton behavior (doted curves) for
g = 2.5 and different powers: (a) power of low intensity solution
PL = 0.5, (b) P = 5.5, (c) power of high intensity solution PH = 11.6,

and (d) P = 25.



and medium characterized by ideal saturation (threshold
nonlinearity) [17].

4.2. Influence of linear losses on soliton propagation

The light absorption is one of the processes intrinsic for the
photorefractive effect, thus absorption losses play a signifi-
cant role in the dynamics of photorefractive solitons. The
influence of losses on the evolution of optical beams can be
taken into consideration by addition of a loss term to prop-
agation Eq. (7)
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where W = (a/2)kw0
2 and a denotes an absorption coeffi-

cient of the medium. We examined the influence of loss on
the evolution of bright solitons by numerical integration of
Eq. (17) for W = 0.1 (a value of this order, e.g., occurs for

15 µm wide soliton in PRMQW with parameters n0 = 3.5, l
= 860 nm, a »1 cm–1, taken from Ref. 18). As an initial
distribution, a high intensity soliton solution for g = 2.3 and
peak intensity r0 = 5 was used. As expected, the soliton
starts to evolve with the peak amplitude and beam width
decreasing as long as it does not reach the minimum on the
existence curve. For the peak intensities lower than r0(gcrt)
(which correspond to the minimum on the curve in Fig. 1)
soliton width increases. We depicted this evolution in
Fig. 7, where the circle marks, inserted on the existence
curve, describe the modified values of g obtained by nu-
merical tracking of the soliton width and amplitude during
the propagation with losses.

As it can be seen from Fig. 7, moderate absorption does
not destroy soliton behaviour and permits adiabatic evolu-
tion along the existence curve. Moreover, we found, that in
the initial phase of propagation, both high and low intensity
solitons (for g = 2.3) try to retain the shape and their width
remains unchanged as long as the normalized axial coordi-
nate does not exceed x = 2 (which corresponds to the actual
distance z = 0.29 cm for mentioned previously PRMQW). In
the next phase of propagation the high intensity beam starts
to narrow while the low intensity one begins to widen.

5. Conclusions

We analysed the propagation of light beams in biased
photorefractive media with quadratic electro-optic effect.
The analytic solution for one-dimensional, bright spatial
solitons was found. The soliton solutions are stable and ro-
bust against moderate losses. The numerical investigation
of Gaussian beams evolution shows that an arbitrary input
shape does not converge to a perfect soliton but evolves in
periodic or quasi-periodic manner. Similar propagation
properties have been found by using different forms of sat-
urable nonlinearity, however, an exact analytic solution of
propagation problem presented here, creates possibilities
for further theoretical investigation.
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Fig. 6. Evolution of the amplitudes of initially Gaussian beams
(solid curves) with power of high intensity soliton solution for
several values of g. Dotted lines mark amplitudes of soliton

solutions.

Fig. 7. Existence curve (solid line) and circle marks describing
adiabatic change of g, obtained from numerical integration of

Eq. (17).
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