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The steady-state analytical expressions for the space-charge field harmonics generated by the high contrast interference pat-

tern in biased photorefractive material with ambipolar transport are presented. As an example semi-insulating multiple

quantum wells film operating in the Franz-Keldysh geometry was considered. Parameters of photorefractive grating created

by a quadratic electro-optic effect were analysed. Calculations based on the band transport model were limited to the low ex-

ternal field case what corresponds to the linear transport regime. In particular, it was found that the photogenerated carriers

density has nearly harmonic distribution. Moreover, the fundamental component can be obtained from the linear equations

what enables us to improve the solution for the space-charge field in bulk, nonresonant materials described by the classical

Kukhtarev’s model
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1. Introduction

Dynamic holographic gratings in photorefractive (PR) ma-

terials are widely used in optical signal processing and ma-

terials characteristics measurements [1]. From theoretical

point of view, PR effect is mostly described by the band

transport model also called the PDDT (photogeneration-

diffusion-drift-trapping) model [2] based on classical

Kukhtarev’s equations [3]. Photorefractive experiments as

well as theoretical and numerical analyses are usually con-

ducted for the sinusoidal light pattern. For the small modu-

lation depth m, the PDDT equations can be linearized [4]

and a solution limited to the first harmonic can be easily

obtained [5,6]. In the case of materials with a linear elec-

tro-optic effect, this approximation corresponds to a linear

response of the material and the superposition of multiple

gratings is applicable. On the other hand, the stronger PR

response is obtained for the high fringes contrast m. Hence,

many experiments especially focused on applications, are

carried out with m ~1. However, for the large modulation

depth, strong departure from the harmonic distribution of

the space charge appears and the exact analytic solution of

the PDDT model does not exist. Thus, to solve this equa-

tion system for an arbitrary value of m numerical [7–12]

and approximated methods [13–17] were developed. Al-

most all publications dedicated to this problem focus on the

analysis of the Kukhtarev’s model with a single type of

charge carriers [7–17]. In one of the last publications [18],

steady state solutions obtained within the electron-hole

transport model were reported as exact solutions. However,

the results are not consistent with the most of previous pub-

lications [13–17] and do not explain a dependence of the

average electric current on the fringe contrast [17]. In fact,

the perturbative method used in Ref. 18, like as in Refs. 19

and 20 fails for large value of m (see Ref. 21).

The simple unmodified Kukhtarev’s model describing

the most important features of photorefractive effect (PRE)

in nonresonant, bulk materials is not adequate for several

new, highly effective materials like PR polymers [22], PR

liquid crystals [23] or PR multiple quantum wells

(PR-MQW) [24,25].

In this paper, we deal with the PDDT model describing

interband PRE [26] in semi-insulating semiconductor

MQW’s sample working with the dc external field parallel

to the wells planes and to the light intensity changes [27].

Very high sensitivity and short response time (of the order

of s) make PR-MQW material attractive for applications,

especially in optical signal processing and real-time holog-

raphy [25,27,28]. Free carriers in PR-MQW are mainly

generated by interband transitions and photorefractive ef-

fect relies on the change of absorption caused by the influ-

ence of electric field on resonant exciton transitions in

quantum wells. Changes in the index of the absorption and

refraction (related by Kramers-Kronig formulas) depend on

the squared electrical field intensity, in contrary to the clas-

sical linear electro-optic effect characteristic for non-reso-

nant materials. The photorefractive properties of MQW

films were investigated in GaAs-AlGaAs [25,27],

ZnTe-CdZnTe [29], and GaAs-InGaAs [30] systems. In

our calculations, we used parameters of the most common
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GaAs-AlGaAs system. However, in this case two limita-

tions should be taken into account. Firstly, for the fields of

above 3–4 kV/cm, electrons mobility is reduced because of

nonlinear transport caused by inter-valley scattering [31].

Moreover, the quadratic dependence of the absorption and

refractive index changes on the electric field applies only

for relatively small value of the electrical field (<10

kV/cm), with the value of limit depending on the quantum

confinement strength in the considered structure [32].

Here, we restrict the analysis to the linear transport case,

taking into account external electric fields below 3 kV/cm.

However, it will be shown that for the high fringe contrast

(m » 1) total electric field can locally be considerably

higher than the external field what limits also the range of

described modulation depths.

Nevertheless, in PR-MQW, in which photoconductivity

is strongly dominated by holes transport, the effect of the ve-

locity saturation caused by hot electrons appears at above

6–8 kV/cm [27]. In this case, the results presented here are

valid even for the modulation depth in the range of 0.7–0.8.

2. Theoretical background

2.1. The band transport model

The simplest but commonly used PR transport model as-

sumes two energy levels in the gap between valence and

conduction band, one deep traps level (defects or impuri-

ties) and one shallow level of other species. Here, we as-

sume that the deep donors ND fully compensate the shallow

acceptors (NA = N A
- = constant). When the non-uniform

light pattern falls on the sample, free carriers excited in

bright regions drift and diffuse and finally they are trapped

in dark regions. As a consequence, the inhomogeneous

space charge field forms and modulates the index of refrac-

tion through the electro-optic effect.

In Fig. 1, the most important PR transport processes are

shown. In the case of conventional materials described by

the one-band model, carriers are created by photoionization

of defects and interband generation is omitted. In

PR-MQW interband, absorption dominates and transitions

1’, 1’’ can be neglected. This difference significantly alters

the PR properties of the materials.

We consider the material response under a stationary

interference pattern

I z I m iKz c c g z( ) [ ( )exp( ) . . ] ( )= + +0 1 2 , (1)

where I0 = I1 + I2 is the average light intensity, m =

2(I1I2)
1/2/I0 is the modulation depth (fringes contrast), K =

2p/L, where L is the interference pattern period, and g(z)

describes the finite size of the light pattern. The sample is

biased by a constant electric field applied in the z-direction,

along quantum wells (so-called the Franz-Keldysh geome-

try). If we neglect the transverse carriers transport, the

PDDT model can be reduced to the one-dimensional equa-

tions. The equations system, with the thermal generation

and the direct recombination of the carriers neglected, takes

the following form [27,33]
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where Etot is the sum of the external field Ea and the space

charge field Esc (Etot = Ea + Esc).

The indices e and h refer to electrons and holes, respec-

tively, n denotes the concentration of free carriers, N D
+ , N D

0

are ionized and non-ionized donors (N N ND D D= + +0 ), NA

is the acceptors concentration, g is the recombination coef-

ficient, µ is the mobility of the carriers along the quantum

wells. Term bI represents the inter-band free carriers gener-

ation rate, terms beI and bhI the photo-generation from de-

fects rates, where b = a/hn, be = seN D
0 /hn and bh=

shN D
+ /hn. Equation system (2a)–(2f) describes PR effect

for resonant PR-MQW as well for non-resonant materials.

In the first case, usually be, bh << b and in the second be, i

>> b. Values of a, se, sh, l, and other parameters of GaAs

wells used in calculations are listed in Table 1.

When the external dc electric field is applied, the equa-

tions system is supplemented by the boundary condition

E Etot L a= , (2g)

where K
L

denotes spatial averaging over the grating

length L.
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Fig. 1. Fundamental photorefractive transitions in the one-defect

model. For PR-MQW the key role plays the inter-band absorption

(transition 1), for the non-resonant materials the defects ionization

(transitions 1’ and 1’’).



2.2. Harmonic amplitudes equations

We look for solutions of equations system (2a)–(2f) in the

steady state. The period of the light pattern L is usually

much smaller than the grating length what enables us to

impose the periodic boundary conditions on I(z), that is to

take g(z) º 1 in Eq. (1). In that case the condition of Eq.

(2g) can be reduced to average over one grating period

Esc = 0. (3)

Now, the solutions can be postulated in the periodic

form [15,19]

V z V V nKzn
n

n( )
~

cos( )= + +
=

¥

å0
1

f , (4a)

where V(z) describes the following variables ne, nh, N D
+ , je,

jh, and Esc. The solutions include the amplitudes
~
Vn and the

phase shifts fn of the Fourier components in respect to the

interference pattern. Mathematically more convenient is

the complex notation

V z V V inKz c cn
n

N

( ) exp( ) . .@ + +
=

å0
1

(4b)

For the sake of calculations, the truncated Fourier ex-

pansions are used. Now, Vn indicates the complex ampli-

tude of the n-th harmonic Vn = |Vn|exp(ifn) where

V Vn n= ~
2.

Substituting Eq. (1) and Eq. (4b) to equations system

(2a)–(2f) and comparing the components with the same

exp(inKz) factor we get the algebraic equations system for

the n-order harmonic amplitudes. For clarity, we have

separated all expressions corresponding to the n-th har-

monics and reduced the problem to three variables ne, nh,

and N D
+ .

where dm,n indicates the Kronecker delta function, and

d dm n m n, ,= -1 .

The n-th (n ³ 1) amplitude of the space charge field can

be determined from the Gauss law, Eq. (2f)

E
q

inK
N n nn D n h n e n= + -+

e e0

( )( ) ( ) ( ) . (5d)

The terms Gj expressing the processes rates per unit of

time are listed in Table 2.

2.3. Zero order solutions

Zero order components depend on the average light inten-

sity and can be derived from Eqs. (2a), (2b), and (2f) for

homogenous illumination I = I0 = constant
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Table 1. Parameters used in calculations.

Material parameters

Cross section for photoionization of traps
(Ref. 27)

se = 1´10–17 cm2

sh = 1´10–16 cm2

Cross section for recombination to traps
(Ref. 27)

se = 1´10–14 cm2

sh = 5´10–15 cm2

Interband absorption coefficient (Ref. 27) a = 104 cm–1

Trapping coefficient ge = 4´10–7 cm3/s
gh = 1´10–7 cm3/s

Carrier mobility (Ref. 33) me = 5000 cm2/Vs
mh = 300 cm2/Vs

Compensation ratio of donors traps
(Ref. 33)

r = NA/ND = 0.5

Writing wavelength (Ref. 33) lw = 630 nm

Reading (resonant) wavelength (Ref. 27) l = 835 nm

Fringes contrast 0 < m £ 1

External electric field Ea £ 3 kV/cm

Average light intensity I0 = 10 mW/cm2

The trapping constants were estimated using the relation [34] gi =

si vth(i), (i = e,h), where vth is the average thermal velocity of the

carriers.
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To determine the higher harmonics we made two sim-

plifying assumptions, the low light intensity I0 < 1 W/cm2

and sufficiently the large defects density ND > 1017 cm–3.

Both assumptions are fulfilled for the typical experimental

conditions. In such a case, the free carriers densities are

significantly smaller than the traps densities (ne, nh <<N D
+ ,

N D
0 ) and only slight traps depletion occurs [DN D

+

<<N D
+ (t=0) = NA and DN D

0 <<N D
0 (t=0)] what is called lin-

ear recombination approximation. In this case, the first or-

der solution is N D
+ = NA, ne0 = bI0te, and nh0 = bI0th, where

te,h are the average lifetimes of electrons and holes

t g t ge e A h h D AN N N= = -- -( ) , [ ( )]1 1. (6d, 6e)

In the result of the above assumptions, the carrier density and

dielectric relaxation rate products in equation system (5a)–(5c)

can be neglected and in Eq. (5d) we have E(n) ~N D n( )
+ .

3. Dependence of the harmonic on lower order
components

3.1. Non-coupled equations
In a general case, equation system (5a–5c) has only numer-

ical solutions, because each harmonic is coupled with the

higher order harmonics as well as with the lower order

ones. Disregarding influence of the higher order harmonics

(n > n) on the n-th components corresponds to a pertur-

bative approach, where DI(z) = mI0cos(Kz) is treated as a

perturbation of homogenous illumination and the modula-

tion depth m as the perturbation parameter. That kind of

procedure is correct when m3 << m (practically up to m £
0.8), but fails when m tends to unity. However, in this ap-

proximation the contribution from the most important har-

monics is taken into account, thus this kind of solution is a

good starting point to the solution of the complete equation

system (5a–5c). Further, for simplicity, full equation sys-

tem (5a–5c) will be called the coupled equations while

equations with a neglected influence of the higher order

components – the non-coupled equations. So, taking only

the components from j = 1 to n – 1 we get the linear

non-coupled equations system in the form

WnVn = Fn, (7)

where

Vn = [ne(n) nh(n) N D n( )
+ ]T is the vector of variables,
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Table 2. Electron and hole process rates.

Ion recombination rate GRe = (geND
+ )–1 GRh = (ghND

0 )–1

Drift rate GEe = KµeEa GEh = KµhEa

Diffusion rate GDe = KeEd GDh = KµhEd

Dielectric relaxation rate Gdie = qene0/e0e Gdih = qµhnh0/e0e

Carrier recombination rate Ge = ene0 Gh = ghnh0

N-th order dielectric relaxation rate Gdie(n) = qµene(n)/e0e Gdih(n) = qµhnh(n)/e0e

N-th order carrier recombination rate Ge(n) = gene(n) Gh(n) = ghnh(n)
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is the matrix of process rates, and Fn is the “excitation” vector
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The space charge field Esc harmonics can be obtained

from Eq. (5d) neglecting ne(n) and nh(n). For n = 1 one gets

the linear solution.

3.2. Harmonics of the carriers densities and space
charge field

The numerical solution of Eq. (7) shows, that for arbitrary set

of the values of L, ND, m, and Ea the first harmonic strongly

dominates in the free-carriers spectra. The phase shift of the

first harmonics in respect to the light intensity distribution is

close to zero. Similar result was obtained numerically for the

one-band Kukhtarev’s model in Refs. 11,17. The dependence

of |ne(2)|/|ne(1)| ratio, (expressing the contribution of the higher

harmonics), on Ea and the effective traps density Neff = r(1 –

r)ND, for m = 1 is shown in Fig. 2.

It should be noticed that the plots were calculated nu-

merically from the complete set of equations, without lin-

ear recombination approximation. From Fig. 2, we can in-

fer that for the high traps concentration, the contribution of

higher harmonics to ne,h(z) can be neglected. However,

when Neff is small and Ea is large, the ne,h(z) distribution

can significantly depart from sinusoidal shape what is

shown in Fig. 3. This conclusion is different from the result

in Refs. 11 and 17, where the higher harmonics contribu-

tion was neglected in every case.

Then for typical, high Neff, the electron and hole distri-

bution can be expressed as
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0 11 f ]
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where fe,h 0 and m1e »m1h = m1. Difference between fe and

fh occurs only for strong diffusion currents (L < 1 µm). On

the basis of linear equations [Eq. (7) for n = 1] we find that

the carrier density modulation depth is given by
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m
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Eq = qNeff/(ee0K) (8d)

is the saturation field [34].

Note incidentally, that describing the electron and hole

gratings by the same expression involves automatically the

small trap depletion. This conclusion is immediately appar-

ent from Eq. (2c). In fact, assuming ne,h(z) = ne,h0[1 + p(z)],

where p(z) is arbitrary periodic function and inserting this

expressions to Eq. (2c) one gets
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g g
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The ionized donors distribution is approximately equal

to the average value. It means, that significant modulation

depth of N D
+ (z) is obtained provided that free carrier distri-

butions ne and nh are different.

Neglecting of ne,h(n) components for n > 1 allows us to

express the vector Fn in the simplified form
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Fig. 2. Amplitude of the second harmonic of electron density against the first one as a function of the grating period and the effective trap

concentration (a), the applied electric field (b), obtained from numerical solution of Eq. (7). High modulation depth, m = 1, is assumed.



where the terms Ge(n), Gh(n) were disregarded because for

the material parameters characteristic for MQW (Table 1)

holds Ge(n), Gh(n) << Gdie(n), Gdih(n). Note, that this relation

arises from material parameters, hence for the considered

material system is always satisfied. Substituting vector of

Eq. (9) to Eq. (7) and using the Cramer’s law one can find

the expression for the complex amplitude of the n-th har-

monics of Esc(n ³ 1)

~
( )( ),E h m E i En

n
a d= +2 1 x (10a)

h m
m

( ) ,1
1

2
= - (10b)

x
m t m t
m t m t

=
-
+

e e h h

e e h h
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where x = x(ND,r,me,h,ge,h) is so-called competition factor

between electrons and holes, ranging from –1 to 1.

For n = 1, Eq. (10.1) is convergent to the formula de-

rived in Ref. 33 and it is equal to the formula in Refs. 27

and 35 if z =1 is set in Eq. (8a). Both mentioned solutions

are expressed in terms of the characteristic electric fields.

4. Influence of higher order harmonics

The formula describing the field profile Esc(z) for arbitrary

value of m can be derived from currents densities of Eqs.

(2d) and (2e) for the carriers density distribution analogous

to Eq. (8)

$ ( ) $ ( ) [ cos( )], , , ,n z n n z n a Kze h e h e h e h= + = +0 1 0 11 , (11)

where $ ( ),n ze h is the carriers distribution in the case of cou-

pling with higher harmonics included, and a1 is an un-

known modulation depth coefficient. We expect that for

small modulation depth a1 » m1. The symbol ^ marks that

the coupled amplitudes are used. In this case the sum of

Eqs. (2d) and (2e) gives
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where J J0 0= = constant according to the continuity

equation in the stationary state and the following designa-

tions were introduced: sh = qmhnh0, se = qmene0, and the to-

tal conductivity s = se + sh.

Determining Esc(z) from Eq. (12) and using the bound-

ary condition of Eq. (3) we get

J E
a Kz

E aa a0
1

1
21

1
1=

+
= -s s

cos( )
(13)

Substituting Eq. (13) to Eq. (12) and noting that

x s s s= -( )e h yields Esc(z) as
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Calculating the Fourier transform of Eq. (14) one finds
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For the small m, when a1 »m1, the functions f(a1) and h(m1)

are very similar, f(a1) » h(m1).

The Poisson’s equation gives the expression describing

distribution of the ionized donors
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( )

sin( ) ( cos( ))

(

1
0

1
2

1

1

1

1

e e

x

cos( ))Kz
N A2

+

. (16)

Equation (15b) can be obtained from coupled system of

equations (5a)–(5c) only under the condition that a1 = m1.

For that purpose one can consider one from equations for n

= 1, for example Eq. (5a). Taking advantage of Eq. (5d)
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Rys. 3. The electrons density distribution (solid line) for the effective traps concentration of 2´1015 cm–3 and an external electric field of 3

kV/cm (a). The dotted line denotes the light intensity distribution. Harmonics amplitudes spectrum for the electrons density distribution (b).
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and Eq. (10.1) we introduce the notation N D n( )
+ = nhnA and

$
( )N D n

+ = nfnA, where A = (iKe0e/q)(Ea + ixEd), and f(a1) is

an unknown function replacing the function h(m1) for the

large m. Setting $ ( ) ( )n ne e1 1= , what corresponds to a1 = m1,

in Eq. (5a) gives the coupled amplitude $
( )N D 1

+ as a sum of

the uncoupled amplitude N D( )1
+ and the correction term

CHH(1) arising from coupling with higher harmonics

$
( ) ( ) ( )N N CD D HH1 1 1

+ += + , (17)

where

N n
m

bI

C

D die e tote

HH di

( ) ( ) ( )

( )

,1
1

1 1 0

1

2

+ -= -æ
èç

ö
ø÷

= -

G G

G e die j D j j j
j N

N

j N- -
-

+

= -
å1 1

1 0 1
1

G ( ) ( ) , ,
$ d d

. (18)

The terms Ge(1-j) and ne(j), nh(j) were dropped according to

the previous estimations, sec. (3.2).

Because |ne(1)| >> |ne(n)| for n >1, the CHH(1) can be re-

duced to the form

C
n

n
N

m
f AHH

e

e
D1

1

0
2

1 2

2 4
2» - = -

æ

è
çç

ö

ø
÷÷

- +( )
( )

*

$ , (19)

but m1
* = m1 because m1 is the real quantity [see Eq. (8a)]

and Eq. (17) can be written as

fA = (–m1/2)A + (–m1/2)f 2A, (20)

leading to Eq. (15b). In the same manner, the function f(a1)

can be derived from coupled equations for n > 1, providing

that a1 = m1 what suggests the general assumption

$ ( ) ( )n ne n e n= for the arbitrary order n. Indeed, application

of the amplitudes $ ( )( ) ( )N f m ND n
n

D n
+ += 1 and $ ( ) ( )n ne n e n=

in a system of equations (5a)–(5c) leads to very good con-

vergence of equations. Then, taking into account the influ-

ence of coupling with higher harmonics is equivalent to

multiplication of the space-charge amplitudes by f m
n ( )1 ,

whereas the amplitudes of carrier densities stay unchanged

what is in our opinion one of the most important results of

this paper.

5. Harmonics in PR-MQW and in conventional
materials

Within the framework of the classical one-band transport

model described by a system of equations (2a)–(2f) with Vh

= 0 and b = 0, many authors [1,15–17] obtained a formula

for the space charge field Esc components similar to Eq.

(15a); (for one kind of carriers x = 1 is put). The most im-

portant difference is that instead of the carrier grating mod-

ulation depth m1(L) the light modulation depth m appears.

The solution in the form

~
( )( ); ( )E f m E iE f m

m

m
n

n
a d= + =

- -
2

1 12

; (21)

is usually called the Moharam’s solution [1,37]. The rela-

tionship m1 = m comes from the fact, that (besides of the

assumptions as in sec. 2.2) usually N ND D
+ << is assumed,

hence N N ND D D- @+ is substituted. If this approximation

is discarded, the fundamental harmonic obtained from the

linearized material equations [1,3,5] has the form

~
( )E

m

K L i
E

E

E iE

Db
a

q

a d1
2 21

=
-

+ -
+ , (22)

where K L E EDb d q
2 2 = , and LDb is the Debye’s screening

length.

Equation (22) is called the Kukhtarev’s solution. It

should be noted that for m << 1 and Eq >> Ea, Ed, Eq. (21)

tends to Eq. (22). It means, that the Mohram’s solution

does not take into account saturation of the space charge

field, what is possible for the limited traps density. Both

solutions predict different results for L ® 0. Equation (21)

gives En ® ¥, while Eq. (22) gives En ® 0. Moreover,

the Moharam’s formula leads to some complications for

m = 1 [9].

The difference between the solutions can be eliminated

using the similar way as in sec. 4. From the linear solution

for n = 1, the free electrons grating modulation coefficient

is

m
n

n

m

K L i
E

E

m e
e

e
Db

a

q

i
1

1

0 2 2
1

1

= =
+ -

=
~

( ) f . (22a)

Derivation like in sec. 4 leads to the Fourier transforms

of the field Esc

~
( ) ( )E f m e E iEn

n in
a d= +2 1

f . (22b)

For the small value of m, the amplitude
~
E1 from Eq.

(18b) is given by the same expression as
~
E1 from (22).

Comparing Eq. (22b) and Eq. (15a) one sees, that the fun-

damental difference is that for PR-MQW the coefficient m1

and amplitudes
~
En , depend on the bipolar diffusion length

LD, while for the non-resonant materials they depend on the

Debye’s screening length LDb.

6. Linear and nonlinear material response range

In general, deviation of the donors density N D
+ (z) and the

space charge field Esc(z) from the sinusoidal distributions

depends on the light intensity modulation depth m, the

fringe spacing L, the traps concentration Neff, and the mag-

nitude of the applied external field Ea [19]. The assumption
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of linear recombination gives ne,h0 ~I0. In this case, starting

from Eq. (7) and using the induction principle one can find

that all amplitudes ne,h(n) are proportional to I0 and N D( )n
+

do not depend on I0 for any n. Likewise it can be shown,

that [ , , ] ~( ) ( )n n N me e D
T

n n
n+ , from where using Eq. (5d)

one obtains

~
~( )E mn

n . (23)

that stays in agreement with Eq. (10a) and perturbations

calculations procedure. Therefore it is not a surprise

that identical formula was established in Refs. 18, 19,

and 20.

In order to show how the space charge field deviation

from harmonic distribution (often called a nonlinearity)

varies with the grating period, the dependence of E(n) on L
for the biased and unbiased sample is presented in Fig. 4.

In the case of Ea = 0, every curve has the maximum. For

the amplitude n = 1 this maximum appears for the light pat-

tern period close to

LB DL= 2p . (24)

This result differs from the solution of Eq. (18), where

LB = 2pLDb [18,19]. On the basis of the plots from Fig. 4

the characteristic period LB can be treated as the border be-

tween the linear and nonlinear response ranges. For L <<

LB, the amplitudes of the higher harmonics are much

smaller than the fundamental one, regardless of the modu-

lation depth m. Likewise the fundamental harmonic domi-

nates for L >> LB and m << 1. Both cases represent the lin-

ear response. For L >> LB and m ~1 higher harmonics be-

come important and the response is strongly nonlinear. The

dependence of S E En n= ~ ~
1 for n = 2, 3, and 4, on the

grating period is depicted in Fig. 5. The influence of the ap-

plied field Ea on the values of Sn is negligible.

It is worthy to note that L < LB gives KLD > 1 in Eq.

(8a), and hence m1 << m. In this case f(m1) »h(m1) = –m1/2,

what means, that the Eq. (23) is satisfied for every value of

m. On the other hand, if L >> LB, the deviation from the

linear function h(m1) takes place, however, it becomes sig-

nificant for m > 0.8. The boundary grating period LB is

strongly dependent on the trap density. Larger trap density

leads to shorter recombination times and diminish LB (Fig.

6), in result the nonlinear behaviour appears for the smaller

grating period.

The characteristic grating period LB, was introduced in

Ref. 27 as a quantity determining the PR grating resolution.

This definition follows from the fact that substitution of LB

into linear solution of Eq. (10a) for the first harmonic gives

approximately
~

( )
~

E E sat
1 11 2» , where

~
E

sat
1 is the satura-

tion value, appearing for L ® ¥. Thus, the grating is fully

developed on the condition that L > LB.

At last, according to Eq. (15), the value of the external

field (in the linear transport regime) has a small influence

on the nonlinearity of the space charge field and
~
En ~Ea

occurs with a good approximation.

7. Space charge field distribution

The spatial field distribution Esc(z) can be obtained from Eq.

(14) or equivalently as a sum of the Fourier components

E z E nKzsc n n
n

N

( )
~

cos( )@ +
=

å j
1

(25a)

j
p x

n n

even

odd
d

a

E
E

E
= =

-æ
èç

ö
ø÷

+
æ
è
ç

ö
ø
÷arg(

~
) arctan

0
(25b)

where phase shifts for even and odd components differ of a p.

The minimal number N of harmonics required to guar-

antee convergence of the space-charge field may be de-

rived from the relationship

N m f mmin ( , ) log ( )L = -1 1 1 (26)

where we take only components fulfilling the criterion

|En|/|E1| > 0.1 [18]. The number N is a function of the mod-
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Fig. 4. The first three space charge field harmonics amplitudes as a function of the grating period: (a) without the applied electric field and

(b) with an applied electric field; solid lines express numerical solutions of f m E
n

n( )1 , on the basis of Eq. (7), dotted lines express analytic

solution Eq. (15a). The dashed line shows the linear solution of Eq. (10.1). The other parameters are in Table 1.



ulation depth and the grating period, what is illustrated in

Fig. 7. The number of harmonics increase rapidly for m >

0.8 and for L larger than LB. For the grating period much

smaller then LB, the first harmonic N = 1 is sufficient for

arbitrary value of m. In Fig. 8, the Esc(z) and N D
+ (z) profiles

are shown for L >> LB and for three different values of m.

The space-charge field reaches the maximum value Esc
(max)

in dark places (z = (j + 1/2)L, j = 0,1,2...), while the mini-

mum value Esc
(min) in bright ones (z = jL), screening the ex-

ternal field. If the diffusion is omitted, the extreme values

obtained from Eq. (14) are

E E
m

m

E E
m

m

sc a

sc a

(max)

(min)

,=
+
-

-
æ

è
ç

ö

ø
÷

=
-
+

-
æ

1

1
1

1

1
1

1

1

1

1è
ç

ö

ø
÷

. (27)

The space-charge field obtained for m > 0.8 can be con-

siderably higher then the external field. For the total elec-

tric field above 4 kV/cm the nonlinearity of electron trans-

port which is not included in presented model should be

taken into account. As it can be seen from Fig. 8(b) even

for m =1 the depletion of the ionized donors concentration

amounts to only several percents what confirm our earlier

assumptions.

8. Harmonics of photorefractive grating

8.1. Grating harmonics

For PR-MQW sample operating in the Franz–Keldysh ge-

ometry electrorefraction and electroabsorption approxi-

mately depend on square of the electric field. Changes in

absorption and refraction may be written by means of the

complex refractive index as [27,39]

D $( ) $( ) ( )n z n s E zf totl l= -
1

2

3 2 , (28)

where D D D$n n i= + k, the extinction coefficient k =

al/(4p), nf is the average refractive index of the material, $s

= s1 + is2 is the quadratic electro-optic coefficient and Etot

= Ea + Esc.

Harmonics components of the PR grating created by

quadratic electro-optic effect are not proportional to the

Fourier’s components of the space charge field. In order to

determine grating harmonics we substitute Eq. (21a) to Eq.

(24) and after some algebra obtain the amplitudes

D~ ~ ~
n n s E Ef a

N

0
3 2 2

1

1

2

1

2
= - +

æ

è
çç

ö

ø
÷÷

=
å n
n

(29a)
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Fig. 5. The ratios of higher harmonic to the fundamental one versus

the grating period obtained from Eq. (7). The characteristic period

LB = 3.1 µm. Other parameters identical like in Fig. 4.

Fig. 6. The boundary grating period versus donors concentration

for the constant donor compensation ratio.

Fig. 7. Minimum number of harmonics required to the space-

charge field convergence as a function of the modulation depth and

grating period, for LB = 3 µm.
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where
~
En are the amplitudes of the Esc field according to

Eq. (15a).

Optionally one can use directly the Fourier’s transform

formulas. In that case the space distribution for the refrac-

tive index is

D

D D

n z n s E z

n n inKz

f tot

n
n

( ) ( )

Re( $ exp( ))

= -

= + å

1

2

3
1

2

0

(30)

and distribution of the extinction coefficient, Dk(z), has an

analogous form.

8.2. Dependence of the grating harmonics on basic
parameters

Because the refractive index grating (RIG) and the absorp-

tion grating depend in the same manner on parameters vari-

ations, we reduce our analysis to RIG and use the

space-charge amplitudes given by Eq. (15a). The elec-

tro-optic coefficients values, s1 = –4´10–12 cm2/V2, electro-

absorption close to zero s2 » 0 and nf = 3.55 used in the fur-

ther calculations are taken from [27] for the wavelength l =

835 nm, what corresponds to the localization of the heavy

holes exciton peak in the described AlGaAs-GaAs MQW

sample consisting of sixty periods of 7.5 nm GaAs and 10

nm Al0.3Ga0.7As. In the case of negligible diffusion, Esc

field components are proportional to the external field (sec.

6), therefore RIG harmonics are proportional to square of

the external field Dnn ~Ea
2 . This situation is shown in

Fig. 9(a). In Fig. 9(b), the amplitudes Dnn versus the grat-

ing period are plotted. Comparing this plot with
~

( )En L pre-

sented in Fig. 4(b) one can observe greater higher harmon-
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Fig. 8. The space charge field profile for different fringes contrasts (a) and the ionized donors density profile for the initial density ND
+ (t = 0)

= NA = 5´1016 cm–3 (b). The results obtained for Ea =3 kV/cm, L = 20 µm, and LB = 3 µm.

Fig. 9. Dependence of the refractive grating first three components on a square of the external electric field (a) and dependence of the

components on the grating period, for the applied field of 3 kV/cm (b).



ics contribution. For the large grating periods (L ® 0) RIG

amplitudes approach asymptotically the value

Dn n s E f m

n
f m

f m

n f a
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N n
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obtained from Eq. (29b) In particular it should be noticed,

that the linear solution [n = 1 in Eq. (7)] with the neglected

diffusion gives
~
E mEa1 = - , what leads to the fundamental

harmonics amplitude Dn n s mElinear
f a1
3

1
2= . Whereas, when

the higher harmonics contribution is taken into account, the

refractive grating obtained from Eq. (31) with n = 1 and for

the space charge field
~

( )E f m Ea1 2= takes the form

D Dn n f m f m
f m

f m

linear
N n

1 1
2

2

2
2 1

1

1

max
( )

( ) ( )
( )

( )
= +

-

-

æ

è
ç

-

ç
ö

ø
÷÷ . (32)

For the small modulation depth Ln1
max tends to

Dn linear
1 , however, for m ~1 the amplitude obtained from

Eq. (32) can considerably exceed the value from the linear

solution. By the reason of quadratic relation, the contribu-

tion of higher harmonics in the RIG spectrum is stronger

than in the space-charge field amplitude spectrum. This be-

haviour is illustrated in Fig. 10, where the ratios of the

higher order amplitudes (n >1) to the first order ones are

for the space-charge field and for the refractive index

changes, as functions of the fringe contrast are plotted.

Degree of nonlinearity for Esc(z) and Dn(z) distribution

depends simultaneously on m and L. Hence, in accordance

with the conclusions from sec. 6 and Eq. (29b) one can find

that for L << LB the relation Dnn ~mn is approximately ful-

filled, whereas for L > LB the superlinear dependence ver-

sus mn is predicted. The dependence of the first harmonic

of Dn on L and m is illustrated in Fig. 11. The higher grat-

ing harmonics reveal similar behaviour.

In Fig. 12, the refractive index profile is plotted for the

grating period of 20 µm >> LB and for three different but

this result is obtained under the assumption of the linear

electrons transport. For the analysed PR-MQW one can ex-

pect the considerable influence of the nonlinear transport

effect for Etot > 4 kV/cm.

8.3. Diffraction efficiency

By the reason of strong absorption, PR-MQW devices are

mostly used as thin holographic films (thickness of about

1–2 µm) working in the transmission geometry. Since usu-

ally the grating period is bigger then the film thickness (L
> L), the conditions for the diffraction in the Raman-Nath

regime are fulfilled and many orders of diffracted light ap-

pear. For complex n-th order harmonic grating (Dnn +

iDkn)cos(nKz), diffraction efficiency for the M-th order of

diffraction is given by [27,35,39]

h
p

l q
a
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n n
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n L L
@
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+
¢
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, (33)

where q¢ indicates the internal angle of the incident beam,

and L is the sample thickness. In particular, for the stron-

gest, first diffraction order (M = 1) Eq. (33) gives h1

~(Dnn)
2, (Dan)

2. According to Fig. 11, for properly small

grating periods (L L£ B), h1(K) ~m2, h1(2K) ~m4, should

be expected, where h1(K), h1(2K) are diffraction efficiency

(M = 1) from the first and the second order spatial har-

monic grating, respectively. This prediction stays in the

agreement to experimental results [39]. However, for larger

grating periods and the high fringes contrast, analysed

model predict significant difference from h1
2( )n nmµ . Un-

fortunately, we have not found any experimental data, that

can confirm or not this prediction. Described relations are

illustrated in Fig. 13.
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Fig. 10. Ratios of higher order amplitudes (n >1) to the first order one for (a) the space charge field and (b) the refractive index changes

spectrum versus the light intensity modulation coefficient. Results obtained for L = 20 µm >> LB and the applied field Ea = 3 kV/cm.



9. Conclusions

We found the analytic solution that describes steady-state

space charge field induced in PR-MQW working in the

Franz-Keldysh geometry by a high contrast interference

pattern. Calculations were performed in frames of the

PDDT model for electric field limited to linear transport re-

gime. Moreover, it was found that the solutions for carriers

densities obtained in frames of the perturbative approach

(non-coupled equations) remain correct for arbitrary

fringes contrast m. For high-enough effective traps concen-

tration Neff (i.e., in accordance with Fig. 2 for Neff >

(5–10)´1015 cm–3) free carriers distributions may be treated

as quasi-sinusoidal. In this case, the modulation index m1

of the free carriers grating can be derived from the linear

solution for the fundamental harmonic. Application of this

result to the classical PDDT model describing PR effect in

bulk, nonresonant material enables us to improve the

Moharam’s solution by the replacement of the light modu-

lation m with the carrier modulation m1 being a function of

L, Ea, and Neff. Then, in the small contrast limit the

Moharam’s solution becomes equal to the classical

Kukhtarev’s solutions.

We found also that the characteristic period LB = 2pLD,

(where LD is the bipolar diffusion length) defining the reso-

lution of PR-MQW elements, can be regarded as the bound-

ary period separating the linear and nonlinear material re-

sponse ranges. It makes a basic difference in comparison

with the solution for conventional bulk materials, where the

characteristic period is proportional to the Debye’s screening

length. It was shown that for the large modulation depths the

quadratic electrorefraction enhances the contribution of

higher harmonics in the refractive index spectrum in com-

parison with the space-charge field spectrum.
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Fig. 11. Amplitude of the grating first harmonic as a function of the

grating period and the fringes contrast. For small grating periods

the relation Dn1 ~m is correct in the whole range of m.

Fig. 12. Spatial distribution of the refractive index changes in the

presence of external field of 3 kV/cm for different modulation

depths of the interference pattern.

Fig. 13. Efficiency of the first order diffraction (M = 1) on the first three harmonics of the refractive index grating. In the case of two grating

periods L = 3 µm (< LB) (a) and L = 10 µm (> LB) (b), as a functions of proper powers of the modulation depth m2n (n = 1,2,3) for l = 835

nm, Ea = 3 kV/cm.
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