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The propagation of wide (plane-wave like) and narrow high intensity beams at 1550 nm was investigated in 1D arrays of

AlGaAs channel waveguides which are nearest-neighbour coupled via evanescent fields. Spatial diffraction (beam spread-

ing) by evanescent field coupling leads to dispersion relations that are periodic with propagation direction and hence exhibit

regions of both normal and anomalous diffraction. This results in propagation directions in which filamentation of high in-

tensity beams with superimposed noise occurs, and other regions in which these beams are stable against noise. Both cases

were observed experimentally, and the modulation instability gain was measured versus the spatial frequency of the noise.

Good agreement with theory was found.
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1. Introduction

One- and two-dimensional (1D and 2D, respectively) ar-

rays of weakly coupled channel waveguides have many in-

teresting properties unique to discreteness [1]. Light travels

along the channels and can spread throughout the array via

discrete diffraction. The evanescent tails of the individual

channels overlap the neighbouring channels and light

“leaks” from channel to channel [2]. For “plane waves”,

this results in periodic dispersion relations for the trans-

verse (Bloch) wavevector in terms of the longitudinal prop-

agation constant [1,3]. This in turn leads to ranges of prop-

agation angles that exhibit “anomalous” as well as “nor-

mal” diffraction. This feature, the existence of “anoma-

lous” diffraction, has interesting repercussions on nonlinear

optics in discrete systems.

It has been well-known for many years now that spatial

solitons and modulation instability (filamentation) are mani-

festations of the same physics in media with a self-focusing

nonlinearity [4–6]. Spatial solitons, self-trapped beams, are

formed when diffraction and self-focusing are balanced ro-

bustly. This occurs when a finite cross-section beam is inci-

dent in a self-focusing material with a peak intensity compa-

rable to that required for self-trapping. However, if the beam

at some intensity is much wider (quasi-plane wave) than re-

quired for a spatial soliton, noise on the beam envelope leads

to filamentation (break-up) of the broad beam [7]. Because

spatial solitons are the natural eigenmodes of high intensity

beams in nonlinear media, each of these filaments evolves

towards a spatial soliton if indeed solitons are stable in that

geometry. Otherwise filaments are formed which continue to

change shape and intensity during propagation. This latter

case, for example, occurs in a bulk medium governed by a

pure Kerr nonlinearity.

The transition between these two effects which depend

on the trade-off between input power and beam width,

soliton generation and modulational instability has been

demonstrated using the cascading second order nonlinearity

[8]. Both spatial solitons and modulational instability have

been observed separately near the phase-matching condition

for second harmonic generation by launching into the sam-

ples high intensity beams at the fundamental frequency [9].

By increasing the input intensity of a fundamental beam to

well beyond the soliton threshold, the progression through

single soliton generation, multiple soliton generation and

then filamentation has been observed in LiNbO3 slab

waveguides (1D case) [8,10]. Dramatic differences in the

nature of the filamentation would be expected for discrete

systems because “anomalous” diffraction is allowed [11,12].

By analogy to the case of nonlinear temporal effects in fibers

where temporal dispersion can be either normal or anoma-

lous [13], and filamentation only occurs in the anomalous

temporal dispersion regime, spatial filamentation should not

occur in the anomalous diffraction regime.
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In this paper we describe nonlinear optics experiments

with wide (10’s of channels wide) and narrow (few chan-

nels wide) beams leading to stable propagation for some di-

rections and filamentation for others. The experiments

were performed in AlGaAs arrays which are known to ex-

hibit almost ideal, self-focusing Kerr-law nonlinearities for

photon energies just below one half the semiconductor

bandgap. A short description of these experiments has al-

ready been published in literature [14].

2. Discrete diffraction in arrays

Consider a pair of identical, parallel channel waveguides,

identified as “n” and “n + 1”. The concept of beam cou-

pling in an array of channels is rooted in the response of

such a well-known directional coupler of integrated optics

shown in Fig. 1 [15,16].

The evanescent field of channel waveguide n, an(z)E(x)

couples to an identical waveguide n + 1 which leads to a

transfer of energy with the distance from n to n + 1. After

“one-half beat length” LC there is net energy flow back to n

from n + 1. The equations which govern this exchange are
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where b is the single isolated channel propagation wave-

vector and C = p/(2LC) is the coupling constant. For the

n-th channel inside an array of many waveguides (Fig. 2),

coupling can occur to both the neighbouring channels, n – 1

and n + 1 so that for each channel [2,17]
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The discrete plane wave solutions (constant envelope

field an) in 1D to these equations for the array are obtained

by writing the n-th field as

a E i nk d k zn x z= +0 exp( ( )), (3)

where d is the centre-to-centre channel separation, kx and kz

are the longitudinal (along z) and transverse (along x)

wavevectors and kxd = Dq is the relative phase angle be-

tween the fields in adjacent channels. For the simulations

presented later, a time-independent wave has been as-

sumed. Substituting Eq. (3) into Eq. (2) gives the disper-

sion relation [3]

k C k dz x= +b 2 cos( ). (4)

This dispersion relation is plotted in Fig. 3. There is a

maximum angle which occurs at Dq = p/2 at which the

beam can “slide” across the array due to the evanescent

coupling. Note also that excitation at Dq = p results in light

propagating straight along the array, with relative phase an-

gle p between channels, the so-called “staggered” solution

[11]. Further, the dispersion has a periodicity of k dx = 2p .

Therefore excitation at Dq = 0 or Dq = 2p lead to identical

propagation through the array.

In continuous media, the strength of diffraction depends

on the curvature of the dispersion curve. Clearly from

Fig. 4, “discrete” diffraction in the array varies with Dq. In

analogy with dispersion in the temporal domain, diffraction

can be quantified by

D
d k

dk

z

x

= -
2

2
, (5)

so that for the arrays D = 2Cd2cos(kxd). In the first

“Brillouin” zone (i.e. 0 £ £k dx p ), normal diffraction

(i.e., D is positive) occurs for 0 2£ £k dx p . However,

for p p2 £ £k dx , D is negative, i.e., the diffraction is

“anomalous”, a phenomenon nonexistent in homogeneous

media. Note that at k dx = p 2, the second order diffrac-

tion is zero, i.e., a beam can cross the array without spread-

ing. But, narrow width beams do spread due to higher order
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Fig. 1. Directional coupler.

Fig. 2. Waveguide array.

Fig. 3. Dispersion relation.



diffraction effects since they contain a finite spectrum of

k dx around p/2.

The dispersion relation described by Eq. (4) was inves-

tigated by propagating a wide beam down an array with

variable phase angle Dq between adjacent channels. (This

was achieved by simply directing a planar wavefront onto

the front facet of the sample at small angles relative to the

channel axes.) The resulting beam follows the normal to

the dispersion curve and is deflected away from the centre

channel as the incidence angle is varied. The displacement

Dx of the centre of the beam with incidence angle should

follow Dx = –2Cdsin(dkx) functional dependence [1,11,18].

The beam displacement was measured as a function of Dq
and a typical result is shown in Fig. 4. The deviation from

the simple theory just presented is very clear.

The simple coupled wave picture presented here, al-

though attractive for its simplicity, is just the lowest ap-

proximation to the modes supported by these periodic

structures. In fact, it has been shown that an analysis of this

structure into Floquet-Bloch modes yields in addition to the

fundamental band just discussed a set of higher order bands

neglected in the simple coupled mode theory presented.

The result of such an analysis is shown in Fig. 5. Note that

the point of inflection in the curvature occurs for

k dx = 06. p . As a result, the anomalous diffraction region

is smaller than predicted by coupled mode theory.

3. Modulational instability theory: coupled
mode approach

This unique form of diffraction and dispersion described

above, when combined with a self-focusing (n2 > 0)

nonlinearity, has some interesting repercussions to soliton

physics, specifically in the realm of modulational instabil-

ity. The coupled mode formalism is used in the small signal

regime for convenience.

Consider a single polarization of light. Adding the Kerr

nonlinearity to the coupled wave equations gives [3]
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As stated in the introduction, modulational instability

and spatial solitons derive from the same nonlinear physics.

For the single polarization case of interest here, Eq. (6) de-

scribes the evolution of nonlinear beams in the array. One

now introduces a “noise” perturbation Dn(z) onto a 1D

“plane wave” beam. The origin of this perturbation can be

noise on the input optical beam, imperfections in the sam-

ple etc. and the perturbed beam due to a single spatial Fou-

rier component of the noise can be written as [3,19]

a E z ink d ik zn n x z= + - -( ( ))exp( )exp( )0 D . (7)

In turn, the spatial Fourier component of the noise pertur-

bation can be written as

D D

D
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+

-
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The field an is now substituted into Eq. (6), and using

the fact that E0 satisfies Eq. (2) by itself, two equations in

terms of the small amplitudes Dn
+ and Dn

- can be derived.

These equations can be solved for the dispersion relation

between Kx and Kz giving [19]
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Fig. 4. Measured displacement on a tilted beam in an AlGaAs

array. The black line shows the location of the beam centre.
Fig. 5. The calculated lowest order band as obtained from the

discrete couple mode theory (dashed line) and from the more

accurate Bloch model (solid line).
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For the perturbation Fourier component to grow with

the propagation distance z, Kz must be imaginary. This

leads to the condition
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which only occurs for k dx < p 2, i.e., in the region of

“normal” diffraction. Thus, filamentation can only occur

for Dq p< 2. (For the actual mode dispersion, the onset of

filamentation will occur for Dq p< 06. ). Note that there

are also power thresholds for MI for a given Fourier com-

ponent Kx, discussed in the next paragraph.

Just as in the case of 1D homogeneous Kerr media, ana-

lytic relations can be obtained for the threshold of the onset

of modulational instability and the maximum gain. From

Eq. (10), the threshold field for the appearance in MI is

given by
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and the maximum gain is given by
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Plotted in Fig. 6 is the variation in the gain coefficient

with the relative phase shift Dq between adjacent channels

and the input power for 1D “plane wave” inputs. The

power threshold (solid lines) decreases with increasing Dq.

The maximum gain (dashed lines) increases with the

power per channel P0 and Dq. At the critical power

E C k n0
2

0 24= cos( ) ( )Dq maximum gain only occurs at

Dq = p.

4. AlGaAs array samples

The samples used in the experiments were AlGaAs slab

waveguides into which individual, closely spaced channels

were etched to form multiple arrays, typically each consist-

ing of 101 waveguides. The planar structure was MBE de-

posited onto GaAs substrates and consisted of a 4-µm thick

lower cladding region of Al0.24Ga0.76As, a 1.5-µm thick

guiding layer of Al0.18Ga0.82As, and a 1.5-µm thick upper

cladding region of Al0.24Ga0.76As. Array samples, shown in

Fig. 7, with inter-channel coupling constants C of 0.8 mm–1

and 1.1 mm–1 were fabricated by judiciously choosing both

the centre-to-center channel separation d (9 µm) and the

etch depth e.

AlGaAs channel waveguides of this composition, singly

and as directional couplers, have been studied previously for

all-optical switching [20,21]. Towards that end, both the

wavelength dependence of the real and imaginary compo-

nents of the third order susceptibility were measured as a

function of photon energy in the immediate vicinity of half

the semiconductor’s bandgap [22–24]. The results showed

that for photon energies below one half of the bandgap, the

nonlinear response was Kerr-like with minimal multi-photon

absorption. Such previous characterization of the channel

waveguides established the effective nonlinearity to be n2 =

1.5 ´10–13 cm2/W and linear propagation losses were found

to be typically less than 1.5 dB/cm.
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Fig. 6. Calculated MI gain for an AlGaAs sample with C = 1000 m–1 for (a) Dq = 0 and (b) Dq = 0.3p.

Fig. 7. Array structure and electron microscope image of an array.



5. Experimental details

The experimental geometry is shown in Fig. 8. These ex-

periments in their simplest form require a single wide ellip-

tical input beam, and for the measurement of the MI gain

an additional, co-polarized, wide, weak seed beam injected

into the array at a variable angle to the strong pump beam

to form an interference pattern with variable fringe spacing.

The source was a tunable Spectra Physics OPA pumped by

a Ti:sapphire laser which was amplified by a Ti:Sapphire

regenerative amplifier. The system produced pulses be-

tween 1300 nm and 3000 nm of 1 ps duration at a 1 kHz

repetition rate with individual pulses having energies up to

30 µJ around 1550 nm. The individual pulses were split by

a beamsplitter cube into two co-polarized beams and tem-

porally overlapped using delay lines.

For the first set of experiments only a single beam path

was used. The required elliptical beam was formed by a

combination of elliptical and circular lenses which were ar-

ranged to have a common focus for both beam dimensions

at the input facet of the array. A parallel plate mounted on a

rotation stage before the microscope objective was used for

tilting the input beam direction (and hence varying Dq).

The input and output beam powers were both measured by

detectors. A vidicon camera was used to align the system

and a linear Roper OMA-V InGaAs array was used to ac-

quire data right down to very low power levels.

For the MI gain measurements, the set-up just described

was used with minor modifications. The beam geometry

into the sample is shown schematically in the inset of Fig.

8. A second beam path was introduced to produce a weak

perturbation beam (amplitude 5% of the strong beam am-

plitude). Each beam is then transmitted through a common

lens train and focused onto the array.

6. Modulational instability due to noise

A single 250 ´ 1.5 µm beam of variable power was first di-

rected at varying angles of incidence onto the array’s input

facet of the 8 mm long sample. Figures 9(a)–(c) show the

observed output patterns for input beam angles varying be-
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Fig. 8. Experimental setup. Shown in the inset are two incident coherent beams whose interference results in a periodic modulation of the

more intense beam.

Fig. 9. Measured intensity distribution at the array output for (a)

6 W, (b) 72 W and (c) 193 W powers used to excite the central

channel. Q = Dq is the relative phase between adjacent channels.



tween ±p for three different power levels. The outputs

move across the array due to the different transverse

wavevectors associated with varying Dq. No modulation

instability was observed [Fig. 9(a)] at the lowest power of

6 W (estimated peak power in the central waveguide). The

“striations” observed are due to “noise” on the beam, prob-

ably due to imperfections on the input coupling facet. As

the input power is increased for angles where the array ex-

hibits normal diffraction, these distortions start to grow at

the expense of the background power between them,

whereas in the negative diffraction region the beam shows

no sign of any instabilities. This behaviour is clear at inter-

mediate powers of 72 W. With further increase in input

power, this noise is further amplified in the anomalous dis-

persion regime resulting in large contrast striations or fila-

ments. At the highest shown input power level of 193 W

peak per channel, we observe the breakup of the beam into

filaments, highly localized in a few channels. Of course

there is no net amplification of the input beam and power is

conserved. In order to form such discrete soliton trains

each MI filament collects power from its neighbouring

channels. Previous observations of highly localized dis-

crete solitons showed that the power needed to excite es-

sentially a “single channel” soliton in these samples was of

the order of 1–2 kW.

Note that the transverse wavevector region over which

filamentation occurs extends beyond just k dx = p 2, as

discussed previously and in keeping with the dispersion

curves shown in Figs. 4 and 5. This is a consequence of the

actual “band structure” found in the AlGaAs arrays, as

pointed out by Mandelik et al. In fact, the curves obtained

in Fig. 9(a) trace out the shape of the fundamental band as

a function of k dx .

Excitation with the kind of wide continuous beams

used here also excites modes with energy concentrated be-

tween the channels, i.e., the second band in our case. The

bands effectively overlap around Dq = p. From Bloch the-

ory it is known that the curvature of the second band is

opposite to that for the first band close to Dq = p and leads

to normal diffraction for that case. This is in contrast to

the first band for which diffraction is anomalous there as

discussed previously. By analogy with the MI theory

based on the DNLS (corresponding to the first order band

in Bloch theory) the occurrence of filamentation is ex-

pected. In the same experiment as described above for the

first band, the input beam was tilted beyond the edge of

the first Brillouin zone and the beam at the output of the

samples was recorded. The results are shown in Fig. 10.

As observed in the normal diffraction region of the first

band, for low power the beam at the sample output shows

a small amount of noise. For increasing input power, the

noise becomes amplified. At the highest observed output

power the beam breaks into multiple filaments in this sec-

ond order band.

The dynamic behaviour of a narrower, tilted beam (80 ´
1.5 µm FWHM) was also observed. A beam with 80 µm

FWHM (corresponding to 9 channels) was used to excite

an 8 mm long array with a waveguide separation of 9 µm

and coupling constant of 800 m–1. The beam was then tilted

and the resulting output from the sample was observed.

The results are shown in Fig. 11. At low power the beam

diffracts and the output position follows the curve expected

from Bloch theory. At higher power [Figs. 11(b) and (c)]

the beam undergoes discrete self-focusing and localizes in

one waveguide at the output. For even higher powers,

shown for 1.68 kW in Fig. 11(d), the beam breaks into fila-

ments. This can be explained by the onset of modulational

instability (filamentation) for which the period of the fila-

ments varies inversely with input power and the Peierls-

Nabarro [25,26] potential responsible for the locking of the

beam propagation onto the axial direction of the wave-

guides.

Corresponding DNLS simulations for a beam tilt of

Dq = 0.2p are shown in Fig. 12. Note that the simulations

for 900 W predict the onset of beam breakup. The differ-

ence from the experimental results can be explained by two
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Fig. 10. MI observed in the second band.



factors. First, because the experiment used pulsed excita-

tion and the simulation assumed cw beams, hence the ex-

perimental results represent an averaging over the temporal

pulse profile. Second, the band shape from the discrete

model deviates from the observed one which is better de-

scribed by the Bloch theory than the DNLS. The locking

effect is weaker in the Bloch model.

7. Modulational instability gain

The small signal gain Im(Kz) was measured as a function of

input power. This was achieved as discussed previously,

namely by crossing two beams inside the array at a variable

angle. The growth of the MI is exponential with distance

and it quickly saturates in the 8-mm long sample. For the
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Fig. 11. Output intensity profiles for propagation of a narrow beam with an input power of (a) 42 W, (b) 519 W, (c) 940 W, and (d) 1.68 kW.

Fig. 12. Coupled mode simulation of the beam propagation for the experiments shown in Fig. 11 with Dq = 0.2p for a input power of (a)

50 W, (b) 500 W, (c) 900 W, and (d) 1600 W.



gain measurements, the 4-mm long sample with the higher

inter-channel coupling constant and smaller propagation

length (and hence smaller net gain relative to the 8-mm

sample) was used in order to easily measure the power de-

pendence of the gain coefficient. The amplitude of one

weak beam is only 5% of the strong beam producing effec-

tively a 10% modulation in the intensity of the strong beam

at the input. The interference maxima then grow at the ex-

pense of the power between the peaks, increasing effec-

tively the contrast of the interference pattern. The growth

rate (Kz) with distance z depends on the period of the inter-

ference pattern which determines the value of (Kz). The de-

tailed experimental geometry was shown in Fig. 8.

The spatial power distribution at the end of the sample

was measured and Fourier transformed. A typical example

of the Fourier transform of the intensity pattern obtained at

the array output is shown in Fig. 13. Expected and ob-

served were Fourier components at zero spatial frequency

and at 0.11 µm–1 which correspond to the wide input beam

and the modulation due to the channels, respectively. Peaks

were also obtained from the periodicity associated with the

interference pattern imposed on the incident beam and its

“reflection” from the first Brillouin zone of the structure,

i.e., the peak at 0.11 µm–1. By varying the relative angle of

incidence of the two beams, the periodicity of the interfer-

ence pattern is changed. The “modulation” peaks moved

with the periodicity of the interference pattern. Therefore

the increase in the amplitudes and contrast of the funda-

mental Fourier peaks with increasing input power yields

the gain as a function of Kz.

The growth of the modulation instability peaks with in-

creasing input power was measured and is shown in

Fig. 14(a). Both the experimental and small signal theory

results are shown in Fig. 14(b). At the lowest powers stud-

ied (made possible by the sensitivity of the Roper InGaAs

array), the pump beam is too weak for the modulation to

grow significantly over the length of the sample so that the

5% signal just represents the incident modulation. Growth

is first visible with a pump power of 30 W. The gain grows

with increasing power, and the maximum shifts over to
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Fig. 13. Fourier transform of the measured output intensity for low

power.

Fig. 14. Measured growth of the first and second spatial harmonic (a).

Comparison with theory (b).

Fig. 15. Filamentation (a) and the corresponding Fourier spectrum

(b) for 120 W.



larger spatial frequencies. The agreement between experi-

ment and theory is excellent up to a peak channel power of

90 W. At 120 W the measured gain falls well below the

theoretical value. The cause is clear from Fig. 15(a) which

shows significant generation of higher harmonics, a re-

sponse well beyond the validity of the small signal gain

model described in Sec. 2.

8. Summary

The diverse diffraction properties of arrays have a large im-

pact on the stability of high intensity beam propagation in

self-focusing discrete systems. In contrast to homogeneous

media in which diffraction is always “normal”, there are

ranges of directions in discrete systems for which diffraction

is “anomalous”. In the normal diffraction regions, spatial

solitons can exist, and for wide beams filamentation occurs.

However, in “anomalous” diffraction regions of propagation,

neither bright soliton formation nor filamentation can occur.

These conclusions on filamentation were confirmed experi-

mentally for the first time in AlGaAs arrays of channel

waveguides in which the nearest-neighbour-channels were

coupled via their evanescent field. By operating at photon en-

ergies just below half the semiconductor bandgap, an almost

ideal Kerr material response was utilized. Although simple

coupled mode theory (single band) predicted modulation in-

stability over Dq p< 2 where Dq is the phase difference be-

tween adjacent channels and no filamentation for

p q p2 < <D . The actual band structure resulted in fila-

mentation for the range of angles Dq p< 06. .

The MI gain was also measured as a function of the

spatial periodicity by modulating a strong pump beam (in-

cident at normal incidence onto the array) with a weak seed

beam propagating at variable angles to the pump. The input

power dependence of the contrast of the interference pat-

tern was measured and found to be in excellent agreement

with theory for power ranges over which the small signal

theory was valid. At high powers, the saturation of the

filamentation led to the generation of higher harmonics of

the input interference pattern.

Acknowledgements

This research was supported by an ARO MURI on Gateless

Soliton Computing and a BSF joint USA-Israel program.

References

1. D.N. Christodoulides, F. Lederer, and Y. Silberberg,

“Discretizing light behaviour in linear and nonlinear wave-

guide lattices”, Nature 424, 817 (2003).

2. S. Somekh, E. Garmire, A. Yariv, H.L. Garvin, and R.G.

Hunsperger, “Channel optical waveguide directional cou-

plers”, Appl. Phys. Lett. 22, 46 (1973).

3. D.N. Christodoulides and R.I. Joseph, “Discrete self-focu-

sing in nonlinear arrays of coupled wave-guides”, Opt. Lett.

13, 794 (1988).

4. A.H. Nayfeh and D.T. Mook, Nonlinear Oscillations,

Wiley, New York, 1979.

5. E. Enfield and G. Rowlands, Nonlinear Waves, Solitons,

and Chaos, Cambridge University, Cambridge, 1990.

6. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fi-

bers to Photonic Crystals, Academic Press, New York,

2003.

7. G.I. Stegeman and M. Segev, “Optical spatial solitons and

their interactions: Universality and diversity”, Science 286,

1518 (1999).

8. H. Fang, R. Malendevich, R. Schiek, and G.I. Stegeman,

“Spatial modulational instability in one-dimensional lithium

niobate slab waveguides”, Opt. Lett. 25, 1786 (2000).

9. G.I.A. Stegeman, D.N. Christodoulides, and M. Segev,

“Optical spatial solitons: Historical perspectives”, IEEE J.

Selected Topics in Quant. Electron. 6, 1419 (2000).

10. R. Schiek, H. Fang, R. Malendevich, and G.I. Stegeman,

“Measurement of modulational instability gain of second-

-order nonlinear optical eigenmodes in a one-dimensional

system”, Phys. Rev. Lett. 86, 4528 (2001).

11. H.S. Eisenberg, Y. Silberberg, R. Morandotti, and J.S.

Aitchison, “Diffraction management”, Phys. Rev. Lett. 85,

1863 (2000).

12. R. Morandotti, H.S. Eisenberg, Y. Silberberg, M. Sorel, and

J.S. Aitchison, “Self-focusing and defocusing in waveguide

arrays”, Phys. Rev. Lett. 86, 3296 (2001).

13. G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, San

Diego, 1989.

14. J. Meier, G.I. Stegeman, D.N. Christodoulides, Y.

Silberberg, R. Morandotti, H. Yang, G. Salamo, M. Sorel,

and J.S. Aitchison, “Experimental observation of discrete

modulational instability”, Phys. Rev. Lett. 92 (2004).

15. A. Yariv, “Coupled-mode theory for guided-wave optics”,

IEEE J. Quantum Electron. 9, 919 (1973).

16. R.G. Hunsperger, Integrated Optics: Theory and Technol-

ogy, Springer Verlag, Berlin, 2002.

17. A.L. Jones, “Coupling of optical fibers and scattering in fi-

bers”, J. Opt. Soc. Am. 55, 261 (1965).

18. H.S. Eisenberg, R. Morandotti, Y. Silberberg, J.M. Arnold,

G. Pennelli, and J.S. Aitchison, “Optical discrete solitons in

waveguide arrays. I. Soliton formation”, J. Opt. Soc. Am.

B19, 2938 (2002).

19. Y.S. Kivshar and M. Peyrard, “Modulational instabilities in

discrete lattices”, Phys. Rev. A46, 3198 (1992).

20. K. Alhemyari, A. Villeneuve, J.U. Kang, J.S. Aitchison,

C.N. Ironside, and G.I. Stegeman, “Ultrafast all-optical

switching in Gaalas directional-couplers at 1.55 Mu-M

without multiphoton absorption”, Appl. Phys. Lett. 63, 3562

(1993).

21. J.S. Aitchison, A. Villeneuve, and G.I. Stegeman, “Nonlin-

ear directional couplers in AlGaAs”, J. Nonlinear Opt.

Phys. 4, 871 (1995).

22. J.U. Kang, J.B. Khurgin, C.C. Yang, H.H. Lin, and G.I.

Stegeman, “Two-photon transitions between bound-to-con-

tinuuan states in AlGaAs/GaAs multiple quantum well”,

Appl. Phys. Lett. 73, 3638 (1998).

23. J.U. Kang, A. Villeneuve, M. Sheikbahae, G.I. Stegeman,

K. Alhemyari, J.S. Aitchison, and C.N. Ironside, “Limita-

tion due to 3-photon absorption on the useful spectral range

for nonlinear optics in AlGaAs below half band-gap”, Appl.

Phys. Lett. 65, 147 (1994).

Opto-Electron. Rev., 13, no. 2, 2005 J. Meier 83

7th International Workshop on Nonlinear Optics Applications



24. J.S. Aitchison, D.C. Hutchings, J.U. Kang, G.I. Stegeman,

and A. Villeneuve, “The nonlinear optical properties of

AlGaAs at the half band gap”, IEEE J. Quantum Electron.

33, 341 (1997).

25. U. Peschel, R. Morandotti, J.M. Arnold, J.S. Aitchison, H.S.

Eisenberg, Y. Silberberg, T. Pertsch, and F. Lederer, “Opti-

cal discrete solitons in waveguide array. 2. Dynamic proper-

ties”, J. Opt. Soc. Am. B19, 2637 (2002).
26. R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg,

and Y. Silberberg, “Dynamics of discrete solitons in

optical waveguide arrays”, Phys. Rev. Lett. 83, 2726

(1999).

Wide beam stabilities and instabilities in one dimensional arrays of Kerr-nonlinear channel waveguides

84 Opto-Electron. Rev., 13, no. 2, 2005 © 2005 COSiW SEP, Warsaw


