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We present a summary of the recent results of our studies of nonlinear localization effects in optically-induced periodic in-

dex structures in photorefractive crystals. We demonstrate the generation of spatial bright solitons, controllable excitation of

gap solitons and their anomalous steering properties.
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1. Introduction

There has been growing interest in propagation of optical

beams and pulses in media with periodically varying re-

fractive index [1–4]. Such periodic structures or optical lat-

tices lead to appearance of a band gaps in the transmission

spectrum of waves [5]. As a result, diffractional properties

of optical beams can be drastically modified by the pres-

ence of a lattice. For instance, depending on the wave num-

ber, the sign of diffraction may change from normal to

anomalous. Lattice-induced propagation effects become

even more dramatic in the presence of the nonlinearity of

the medium leading among others to the formation of dis-

crete and gap solitons. Typical experimental approach to

studies of light propagation in periodic structures involves

optical beams propagating through permanent structures

created by, for instance, etching or diffusion in the optical

materials such as semiconductors or polymers. In fact, such

waveguide structures have been successfully employed re-

cently to investigate both linear and nonlinear light propa-

gation [6–8]. Recently, dynamically created periodic struc-

tures in photorefractive crystals have been demonstrated

[9,10]. By interfering two or more plane waves in the crys-

tal and utilizing the photorefractive effect, one- and two-

-dimensional periodic lattices of various symmetries have

been obtained. Propagation of an optical beam in such

structure lead to self-trapping of the beam in form of non-

linear localized modes.

In this paper we present a summary of results of our re-

cent theoretical and experimental studies of nonlinear prop-

agation of optical beams in optically induced lattices. In

particular, we will discuss formation of discrete and gap

solitons and their properties.

2. Theory

We begin with the theoretical analysis of spatial beam

propagation in an optically-induced photonic lattice using

the normalized paraxial equation for the beam electric field

envelope E(x, z) [11,12]
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where x and z are the transverse and propagation coordi-

nates, normalized to the characteristic values x0 and z0, re-

spectively, D = z0l/(4pn0x 0
2 ) is the beamdiffraction coeffi-

cient, n0 is the average medium refractive index, and l is

the vacuum wavelength. Our experiments are performed

using a dynamically induced lattice in a biased photore-

fractive crystal [10–13], where the optically induced

change of the refractive index is

F ( , ) [ cos ( ) ]x E I I x d Eg
2

0
2 2 1= - + + -g p ,

Ib is the constant dark irradiance, Ig is the peak intensity of

the two-beam interference pattern which induces the lattice

with a period d, and g is a nonlinear coefficient. In order to

match our experimental conditions, we use below the fol-

lowing parameters for the theory and numerical calcula-

tions: l = 0.532 µm, n0 = 2.4, x0 = 1 µm, z0 = 1 mm,

d = 22.2, I0 = 1, Ig = 1, g = 5.31, and the crystal length

L = 15 mm. We note that the model Eq. (1) is very general

and appears in other areas of physics. It can describe, in

particular, the BEC dynamics in optical lattices where the

matter-wave solitons are expected to have similar proper-

ties to their optical counterparts.
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Existence of solitons is closely linked to the structure of

the linear wave spectrum. In periodic lattices, the spectrum

is composed of bands corresponding to the propagating

Floquet-Bloch modes, which are separated by gaps where

the wave propagation is forbidden. The Floquet-Bloch

modes are solutions of linearized Eq. (1) of the form

E x z x i x d i zn n nk k ky k b, , ,( , ) ( )exp( )= + ,

where bk,n and k are the Bloch-wave propagation constant

and wavenumber, respectively, the index n = 1,2, ... marks

the order of the transmission band, and yk,n(x) has the peri-

odicity of the lattice.

In Fig. 1(a), we plot the dispersion relation bk,n. In this

plot, we indicate two types of band gaps: the top one exists

due to total internal reflection and extends to b ® +¥,

whereas lower gaps have a finite width and appear due to

Bragg scattering from the periodic structure.

Bright spatial solitons are self-trapped localized beams,

which transverse profiles do not change during propagation

due to a balance between diffraction and nonlinearity. The

corresponding solutions of the model Eq. (1) have the form

Ek,n(x,z) = u(x)exp(ibz), where u(x,b) is the soliton profile,

and b is the propagation constant. Solitons can exist when

b belongs to a spectral gap. In particular, for self-focusing

nonlinearity (g > 0), the simplest localized modes, are

found in the semi-infinite gap. These solitons resemble

conventional bright solitons modulated by the lattice. In the

so called tight-binding approximation, i.e. when the total

electric field can be decomposed into a sum of weakly cou-

pled fundamental modes excited in each waveguide of the

periodic structure, these solitons can be adequately de-

scribed by a discrete nonlinear Schrödinger (NLS) equation

[1,3,4,14], that has stationary, spatially localized solutions

in the form of discrete optical solitons. These solitons have

been extensively explored in a number of theoretical papers

(see, e.g., Refs. 1 and 3), and also observed experimentally

[7,15].

In the self-defocusing medium (g < 0), solitons do not

exist in the total internal reflection gap. Instead, staggered

solitons appear near the lower edge of the first band and

they resemble discrete solitons in self-focusing media be-

ing associated with coupling between the guided modes

confined at refractive index maxima [3,10].

Almost two decades ago, it was suggested that the sys-

tems with periodically modulated parameters can support a

novel type of solitons – gap solitons [16,17], which exist in

band gaps of the linear spectrain various structures includ-

ing fiber Bragg gratings [18], photonic crystals [19], and

Bose-Einstein condensates loaded onto optical lattices [20].

Gap solitons are composed of the forward and backward

propagating waves which are coupled nonlinearly and both
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Fig. 1. Dispersion of Bloch waves in an optically-induced lattice; the spectrum bands are shaded (a). Bloch-wave profiles (solid) and

leading-order Fourier components (dashed) superimposed on top of the normalized refracted index profile of the periodic lattice (shown

with shading) for different gap edges indicated by the arrows (b). Bullets indicate possible location of soliton states.



experience Bragg scattering from the periodic structure.

The strongest coupling occurs when the wave amplitudes

are balanced, corresponding to the formation of slow or im-

mobile gap solitons. In this regime, the specific dispersion

[18] and stability [21] of gap solitons become most evident.

In case of focusing nonlinearity the simplest gap

solitons can form near the edge of the second transmission

band [12,22]. In Fig. 2 we present a direct comparison of

fundamental properties of discrete and gap solitons. The

plots are presented for the solitons centered at maxima

(“odd” solitons) and minima (“even” solitons) of the lat-

tice. At high powers, discrete solitons become localized at

one or two neighbouring lattice maxima, and this defines

their minimum widths. In contrast, the power of gap

solitons is bounded from above because the Bragg-reflec-

tion gap is of finite width, and the spectrum of the maxi-

mum soliton localization should be narrower and lay inside

the gap [18,23]. All even solitons are unstable and tend to

transform into their odd counterparts, however the instabil-

ity growth rate for gap solitons is much smaller than that

for discrete solitons due to a limited difference in soliton

powers and widths in the gap. On the other hand, gap

solitons can become unstable due to inter-band coupling,

whereas discrete solitons do not exhibit such in stabilities

[24].

Gap solitons in periodic systems have profiles closely

resembling modulated Bloch waves near the corresponding

band-edges [24]. Therefore, controlled experimental exci-

tation of spatial gap solitons can be realized if the modu-

lated Bloch-wave profile is properly matched at the input.

Since the Bloch waves are periodic, they can be decom-

posed into the Fourier series. In Fig. 1(b) we show the

characteristic profiles of the Bloch waves, and also plot the

contribution from the leading-order Fourier components

(dashed lines). Therefore it appears that lattice solitons in

the semi-infinite total internal reflection gap. i.e. discrete

solitons, can be generated by a single incident beam, as was

realized in earlier experiments for arrays of weakly coupled

optical waveguides [2]. On the contrary, the Bloch waves

in the Bragg-reflection gap are composed of counter-

propagating waves. Therefore, spatial gap solitons can be

generated by using two Gaussian beams which are tuned to

the Bragg resonanceand have opposite inclination angles,

as was originally suggested in Ref. 25.

3. Experiment and results

The experimental setup is shown in Fig. 3. The light of a

solid state laser at 532 nm is split into two parts.The trans-

mitted (extra-ordinary polarized) beam serves as a probe

beam to induce either discrete or gap solitons in the 15 mm

long SBN:60 photorefractive crystal. The second, ordi-

nary-polarized beam is used to form the optical lattice. It

passes through a Mach-Zehnder interferometer aligned

such that its two output beams intersect at a small angle,

thus producing interference fringes inside the 15 mm long

SBN:60 photorefractive crystal crystal. The difference in

the optical paths of the interferometer could be locked by

use of a piezo-controlled mirror, in order to stabilize the in-

terference pattern. When electric field is applied to the

crystal, the interference pattern induced a periodic modula-

tion of the optical refractive index via the photorefractive

effect. The input and output faces of the crystal could be

imaged by a microscope objective onto the two CCD cam-

eras. Additional white-light illumination is used to vary the

dark irradiance of the crystal and subsequently control de-

gree of saturation of the nonlinearity.

Similar to the localized modes of discrete nonlinear lat-

tices, spatial solitons in optically-induced gratings can be

“even”, i.e. centered between two induced waveguides
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Fig. 2. Numerical results for soliton families: power (top) and

width (middle) vs. the propagation constant. Bottom: soliton

profiles (solid) corresponding to the marked points (a–d) in the

upper plots; shadings mark the lattice minima. Arrows illustrate the

direction of the input beams, which pattern (dashed) approximates

the soliton profile.

Fig. 3. Experimental setup: M – mirrors; PZTM – piezo

translational mirror; PBS – polarizing beam splitters; BS – plane

beam splitters; P – polarizer; SBN – photorefractive crystal; O –

microscope objective; l/2 – half-wave plate; L – AR-coated lens; F

– filters; CCD – cameras.



(minimum of the grating intensity), or “odd”, i.e. centered

on the waveguide (maximum of the grating intensity). We

observed both types of the localized modes. To this end,

the extra-ordinary probe beam was focused by a 6-cm (or

5-cm) focal-length lens on the input face of a crystal.

At low intensities of the probe beam (E
2

002= . ) we

observed diffraction resembling the formation of Bloch

waves of the periodic potential (Fig. 4). Diffraction pattern

is almost independent of the initial position of the probe

beam relative to the grating [Fig. 4(b)]. However, when the

intensity of the probe beam is increased (E
2

083= . ) two

distinct states form [Fig. 4(c)]. When the maximum of the

probe beam is centered between the maxima of the grating,

an even state is generated [Fig. 4(c) – middle column].

However, when the probe beam is centered on a maximum,

an odd state forms [Fig. 4(c) – right column]. The even

mode was observed to be unstable, and transforms into a

non-symmetric structure due to small perturbations of the

beam position. The qualitative picture described above

does not change if a smaller input beam is used (focusing

with a 5-cm lens), such that only a single waveguide is ini-

tially excited. If the grating is erased by introducing a fre-

quency detuning between both grating writing beams (by

driving PZTM with a high frequency AC signal), a standard

single soliton state is observed [Fig. 4(c) – left column].

The simplest “twisted” mode is similar to a pair of two

out-of-phase solitons; it can also be odd or even. The

twisted modes are generated by introducing a tilted glass

plate in half of the input beam. The tilt is set such that both

parts of the beam are p-phase shifted, Fig. 5. The input

beam [Fig. 5(a)] can be centered in between two maxima or

on a maximum of the optical lattice. Without a DC field,

the dipole beam diffracts [Fig. 5(b)]. When a voltage is ap-

plied and the PZT mirror is set to vibrate, a pair of two re-

pelling bright solitons is observed [Fig. 5(c)]. When the op-

tical lattice is formed, a pair of out-of-phase “odd” states is

created [Fig. 5(d)]. If the beam is centered on a maximum

of the optical lattice, a pair of “even”states is observed with

a central waveguide not being excited at all [Fig. 5(e)].

In order to excite gap solitons, the probe beam was split

into two parts which were focused by cylindrical lens and

made to overlap at the input face of the crystal [12]. The

angle between these two beams was set to twice the Bragg

angle, such that the periodicity of the interference pattern

was equal to that of the lattice (22 µm). In our case, such

value of the periodicity allows for a relatively wide gap in

the transmission spectrum, as shown in Fig. 1(a). The rela-

tive phase between the probe beams was tuned such that a

symmetric interference pattern (with a peak intensity I0) is

obtained, as shown in Fig. 6 (top). The relative position be-
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Fig. 4. Experimental demonstration of odd and even spatial-

solitons. Input beam and optical lattice (power 23 µW) (a); the

output probe beam at low power (2´10–3 µW) (b); localized states

(87´10–3 µW) (c). Left column – no lattice (vibrating PZTM),

middle – even excitation, right – odd excitation. Electric field is

3600 V/cm.

Fig. 5. Experimental demonstration of the soliton bound states-

-twisted modes: input (a); outputs (b-e): linear diffraction (b);

dipole beam (c); even symmetry twisted mode (d); odd symmetry

twisted mode (e). Powers: grating – 23 µW, dipole beam – 0.12 µW.

Intensity ratio (E
2
) is 0.077, electric field is 3600 V/cm.



tween this pattern and the lattice could also be controlled,

by changing the relative phase between the two lattice

forming beams. The input width of the overlapping probe

beams is w = 55 µm (65 µm FWHM). For a zero bias field,

when the lattice is absent, the beams become fully sepa-

rated at the crystal output. When electric field of

5000 V/cm is applied to the crystal, the interference pattern

induced a periodic modulation of the optical refractive in-

dex and the probe beams excite Bloch waves at the edge of

the Brillouin zone corresponding to the first or the second

band, depending on the relative lattice position. We posi-

tioned the beams to excite the even gap soliton, corre-

sponding to xe = d/2.

The experimental results are shown in Fig. 6. First, we

align the interference maxima of the input beams with the

minima of the induced lattice at the input face of the crystal

and record the beam profiles at back face for several input

powers [see Fig. 6 (left column)]. The output intensity is

exactly zero at the maxima of the index grating. The inten-

sity maxima are out-of-phase, as confirmed with inter-

ferometric measurements, and posses a double peak struc-

ture located at the minima of the grating. At low powers,

the output intensity pattern is broad and corresponds to the

Bloch waves at the lower gap edge.The beam is exactly

centered between two unperturbed output beams [dashed

curve in Fig. 6 (left column)] measured for zero voltage. At

higher intensity (I0/Ig = 0.04), we observe mutual focusing

of the beams. For intensities I0/Ig = 0.14 the output beam is

self trapped to a state with a width equal to that of the input

[see Fig. 6 (left column)], indicating the formation of a spa-

tial gap soliton.

This gap soliton has zero transverse velocity, and is

centered between the two output beams which separate

when the grating is erased (dashed curve). As predicted

theoretically, the effect of the mutual focusing is limited

and at higher intensities (I0/Ig = 0.25) the beam disinte-

grates [see Fig. 6 (left column, bottom plot)] while its pro-

file becomes asymmetric due to the diffusion contribution

to the photorefractive nonlinearity. On the other hand,

when we align the interference maxima of the input beams

at the lattice maxima, the excited Bloch wave corresponds

to the upper gap edge [see Fig. 1] and they experience

anomalous diffraction [26] leading to self-defocusing as

the power is increased [Fig. 6 (right)]. Our experimental re-

sults are in very good accord with theory. Fig. 7 shows re-

sult of numerical simulation of dynamics of finite-size

Bloch wave represented by the following function

E x I e p x x d
x x w

s
e

0 0

2 2

( ) cos[ ( ) ],
( )= -- -

where the exponential term approximates the gap soliton

envelope, w being the width of the input beams. The inter-

ference term approximates the Bloch-wave profile, with the

shift xs depending on the relative phase difference between

the two beams. When the interference maxima are at the

minima of the refractive index profile, the Bloch mode is

excited at the lower edge of the Bragg-reflection gap, and

the input pattern can well match the gap-soliton profile, as

shown in Figs. 2(a,b).The beams diffract at a low input

power [Fig. 7(a)], whereas an immobile gap soliton forms

when the input power is increased [Fig. 7(b)]. The required

power depends on the input beam width, as follows from

Fig. 2, and the minimum soliton width defines the funda-

mental limit on the degree of two-beam mutual focusing.

Indeed, as the power is increased, a soliton break-up occurs

through a resonant excitation of the first band, and subse-

quent formation of a quasi-periodic breather [Fig. 7(c)].

These are generic effects which may occur in lattices with

various geometries [23], and breathing states were recently

observed in waveguide arrays [6].

Finally, we studied mobility of spatial gap solitons and

a possibility to vary their transverse velocity. Experi-

mentally, the soliton steering is induced by tilting the lat-

tice by 20% of the Bragg angle thus introducing a lateral

shift of the induced waveguides by 16 µm at the output [the

lattice is shifted to the right as illustrated in Fig. 8(a)].

Results of the experimental observations and the nu-

merical simulations are presented side-by-side in

Fig. 8(b,c) show that the generated gap solitons move to

the left whereas the grating is tiled to the right. In the ex-

perimentally obtained intensity profile, on the right-hand

side of the gap soliton (positive x), a small radiation from

the gap soliton can be seen (contribution from the first
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Fig. 6. Experimental results for two-beam interaction (after

Ref. 12). Top: excitation scheme (left) and the input intensity

profile (right). Below: output for varying beam power: Left: mutual

focusing and gap soliton formation when interference maxima are

aligned with the lattice minima; Right: self-defocusing when

interference maxima are at the lattice maxima. Dashed curves

represent the beam profiles at the indicated beam intensity when

the grating is erased.



band), which appears due to asymmetry of the initial exci-

tation profile and due to the in homogeneities of the lattice.

The anomalous steering behavior occurs because the spa-

tial group-velocity dispersion (GVD) for gap solitons asso-

ciated with the second band is almost three times larger

compared to a homogeneous crystal under our experimen-

tal conditions. This is an analogy in the spatial domain to

the superprism effect in photonic crystals. By changing the

lattice period and modulation depth, it is possible to in-

crease or decrease the GVD of gap solitons. In contrast, the

discrete solitons associated with the first band always expe-

rience reduced spatial GVD, and therefore tend to propa-

gate along the lattice [8].

4. Conclusions

We have demonstrated the generation of spatial optical

solitons in an optically-induced lattice in a photorefractive

crystal. In particular, we have observed discrete solitons

and their bound states (twisted modes). We also realized a

fully controlled excitation of spatial gap solitons and ob-

served novel effects such as anomalous steering of gap

solitons and the limitation of the two-beam mutual focus-

ing through inter-band coupling. We believe our results can

also be useful for the study of nonlinear effects in photonic

crystals and nonlinear dynamics of the Bose-Einstein con-

densates in optical lattices.
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Fig. 7. Numerical results. Dynamics of the Bloch waves excited through two-beam interference: linear diffraction at low power (I0 @ 0) (a),

excitation of a gap soliton in the nonlinear regime (I0 = 0.048) (b), beam breakup and the formation of a quasi-periodic breathing state at

higher powers (I0 = 0.29)(c). Left: variation of intensity along the propagation direction; Right: beam profiles at the crystal output

(z = 15 mm) normalized to I0.

Fig. 8. Schematic demonstration of anomalous gap-soliton steering

induced by a tilt of the lattice; dashed line shows the propagation

direction of a gap soliton; arrows indicate the directions of the input

beams (a). Output soliton profile for a lattice tilt in the direction of

larger x by 20% of the Bragg angle with respect to normal; dashed

lines show the beam profiles when the lattice is absent (b,c).
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