
Fuzzy c-means clustering algorithm with a novel penalty term
for image segmentation

Y. YANG*, Ch. ZHENG, and P. LIN

Key Laboratory of Biomedical Information Engineering of Education Ministry,

Institute of Biomedical Engineering, Xi’an Jiaotong University, 710049 Xi’an, China

Fuzzy clustering techniques, especially fuzzy c-means (FCM) clustering algorithm, have been widely used in automated im-

age segmentation. However, as the conventional FCM algorithm does not incorporate any information about spatial context,

it is sensitive to noise. To overcome this drawback of FCM algorithm, a novel penalized fuzzy c-means (PFCM) algorithm for

image segmentation is presented in this paper. The algorithm is formulated by incorporating the spatial neighbourhood in-

formation into the original FCM algorithm with a penalty term. The penalty term acts as a regularizer in this algorithm,

which is inspired by the neighbourhood expectation maximization (NEM) algorithm and is modified in order to satisfy the

criterion of the FCM algorithm. Experimental results on synthetic, simulated and real images indicate that the proposed al-

gorithm is effective and more robust to noise and other artifacts than the standard FCM algorithm.
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1. Introduction

Image segmentation plays an important role in image anal-

ysis and computer vision, which is also regarded as the bot-

tleneck of the development of image processing technology

for until now there is no a technique that can handle all the

segmentations of different types of image. The goal of im-

age segmentation is partition of an image into a set of dis-

joint regions with uniform and homogeneous attributes

such as intensity, colour, tone or texture, etc. Many differ-

ent segmentation techniques have been developed and de-

tailed surveys can be found [1–6]. According to Refs. 1, 3,

and 4, the image segmentation approaches can be divided

into four categories, thresholding, clustering, edge detec-

tion, and region extraction. In this paper, a clustering based

method for image segmentation will be considered.

Clustering is a process for classifying objects or pat-

terns in such a way that samples of the same group are

more similar to one another than samples belonging to dif-

ferent groups. Many clustering strategies have been used,

such as the hard clustering scheme and the fuzzy clustering

scheme, each of which has its own special characteristics.

The conventional hard clustering method restricts each

point of the data set to exclusively just one cluster. As a

consequence, with this approach the segmentation results

are often very crisp, i.e., each pixel of the image belongs to

exactly just one class. However, in many real situations, for

images, issues such as limited spatial resolution, poor con-

trast, overlapping intensities, noise and intensity inhomoge-

neities variation make this hard (crisp) segmentation a dif-

ficult task. Due to the fuzzy, set theory [7] was proposed,

which produced the idea of partial membership of belong-

ing described by a membership function, fuzzy clustering

as a soft segmentation method has been widely studied and

successfully applied in image segmentation [10–17].

Among the fuzzy clustering methods, fuzzy c-means

(FCM) algorithm [8] is the most popular method used in

image segmentation because it has robust characteristics

for ambiguity and can retain much more information than

hard segmentation methods [9]. Although the conventional

FCM algorithm works well on most noise-free images, it

has a serious limitation, i.e., it does not incorporate any in-

formation about spatial context, which cause it to be sensi-

tive to noise and imaging artifacts.

To compensate this drawback of FCM, the obvious way

is to smooth the image before segmentation. However, the

conventional smoothing filters can result in loss of impor-

tant image details, especially boundaries or edges of image.

More importantly, there is no way to rigorously control the

trade-off between the smoothing and clustering. Other dif-

ferent approaches have been proposed [10–15]. Tolias et

al. [10] proposed a fuzzy rule-based scheme called the

rule-based neighbourhood enhancement system to impose

spatial continuity by postprocessing on the clustering re-

sults obtained using FCM algorithm. In their another ap-

proach [11], spatial constraint is imposed in fuzzy cluster-

ing by incorporating the multi-resolution information.

Noordam et al. [12] proposed a geometrically guided FCM

(GG-FCM) algorithm based on a semi-supervised FCM

technique for multivariate image segmentation. In their
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work, the geometrical condition information of each pixel

is determined by taking into account the local neighbour-

hood of each pixel. Recently, some approaches [13–15]

were proposed for increasing the robustness of FCM to

noise by directly modifying the objective function. In Ref.

13, a new dissimilarity index that considers the influence of

the neighbouring pixels on the centre pixel was presented

to replace the conventional normed distance in the FCM al-

gorithm. However, this method can handle only a small

amount of noise [16]. In Ref. 14, a regularization term was

introduced into the standard FCM to impose neighbour-

hood effect. Later, Li et al. [15] incorporated this regular-

ization term into the adaptive FCM (AFCM) algorithm [17]

to overcome the noise sensitivity of AFCM algorithm. Al-

though this method is promising, it is computationally ex-

pensive that means more consuming time is needed during

the computation.

In this paper, a novel fuzzy clustering method, called

penalized FCM (PFCM) algorithm is presented for image

segmentation. The penalty term takes the spatial depend-

ence of the objects into consideration, which is inspired by

the neighbourhood EM (NEM) algorithm [18] and is modi-

fied according to the criterion of FCM. The PFCM algo-

rithm is then proposed by minimizing this new objective

function according to the zero gradient condition, which

can handle both the feature space information and spatial

information during segmentation. The advantage of this al-

gorithm is that it can handle small amount of noise and

large amount of noise by adjusting a penalty coefficient. In

addition, in this algorithm the membership is changed

while the centroid computations are the same as in the stan-

dard FCM algorithm. Hence, it is easy to implement. Ex-

periment results with different kinds of images show the

method is effective and more robust to noise and artifacts

in image segmentation than the traditional FCM algorithm

without spatial constraints.

The remainder of this paper is organized as follows.

Section 2 briefly describes the theory of FCM and NEM al-

gorithms. The PFCM algorithm is presented in Sec. 3. Ex-

perimental results and comparisons are given in Sec. 4.

Finally, some conclusions are drawn in Sec. 5.

2. Preliminary theory

2.1. Fuzzy c-means clustering algorithm

The fuzzy c-means (FCM) clustering algorithm was first in-

troduced by Dunn [19] and later extended by Bezdek [8].

The algorithm is an iterative clustering method that produces

an optimal c partition by minimizing the weighted within

group sum of squared error objective function JFCM [8]
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• if U Ub b( ) ( )- <+1 e, stop; otherwise, set b b= + 1 and

go to step 4.

2.2. Neighbourhood EM algorithm

In order to incorporate the spatial dependence into the ob-

jects, a modified version of the conventional expectation

maximization (EM) [20] algorithm has been proposed in

[18]. In this approach, the maximum likelihood criterion is

penalized by a term that quantifies the degree of spatial

contiguity of the pixels supporting the respective compo-

nents of the probability density function (pdf) model. The

spatial structure of a given data set is defined by using the

matrix W w jk= ( )

w
if x and x are neighbors and j k

otherwise
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The following term is then used for regularizing the maxi-

mum likelihood criterion
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where c is the number of classes and cij is the probability

that xj belongs to class i. This term characterizes the level

of homogeneity of the partition. The more the classes con-

tain adjacent elements, the greater this term is. Let us con-

sider a simple case of a hard partition here, where each ob-
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ject belongs to a single class (cij = 1 if xj belongs to class i,

and cij = 0 otherwise). In this context, if all the objects be-

long to the same class, G(c) will be maximal and if each

object has neighbours which belongs to different classes,

then G(c) will be minimal, that is equal to 0. The new crite-

rion of the NEM algorithm is obtained by optimising the

weighted sum of two terms

U c D c G c( , ) ( , ) ( )f f b= + , (6)

where D(c,f) is the log-likelihood function of EM algo-

rithm, b > 0 is a fixed coefficient. Details about NEM can

be found in Ref. 18. This algorithm is maximized to get the

optimum results just as the same structure as the EM algo-

rithm. Successful results have been reported for image seg-

mentation using this algorithm.

3. Penalized FCM algorithm

It is noted from Eq. (1) that the objective function of the

traditional FCM algorithm does not take into account any

spatial information, this means the clustering process is re-

lated only to grey levels independently on pixels of image

in segmentation. This limitation makes FCM to be very

sensitive to noise. The general principle of the technique

presented in this paper is to incorporate the neighbourhood

information into the FCM algorithm during classification.

In order to incorporate the spatial context into FCM algo-

rithm, the objective function of Eq. (1) is penalized by a

regularization term, which is inspired by the above NEM

algorithm and modified based on the criterion of FCM al-

gorithm. The new objective function of the PFCM is de-

fined as follows
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where wkj is defined as Eq. (4). The parameter g (³ 0) con-

trols the effect of the penalty term. The relative importance

of the regularizing term is inversely proportional to the sig-

nal-to-noise (SNR) of the image. Lower SNR would re-

quire a higher value of the parameter g, and vice versa.

When g = 0, JPFCM equals JFCM. The major difference be-

tween NEM algorithm and PFCM algorithm is that the pen-

alty term in the NEM is maximized to get the solutions

while in the PFCM it should be minimized in order to sat-

isfy the principle of FCM algorithm. Besides, the penalty

term in the PFCM algorithm has the weighting exponent to

control the degree of fuzziness in the resulting membership

function contrary to the penalty term in the NEM algorithm

that is crisp. This new penalty term is minimized when the

membership value for a particular class is large and the

membership values for the same class at neighbouring pix-

els is also large, and vice versa. In other words, it con-

strains the pixel’s membership value of a class to be corre-

lated with those of the neighbouring pixels.

The objective JPFCM function can be minimized in a

fashion similar to the standard FCM algorithm. An iterative

algorithm for minimizing Eq. (7) can be derived by evalu-

ating the centroids and membership functions that satisfy a

zero gradient condition. The constrained optimization in

Eq. (7) will be solved using one Lagrange multiplier
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Taking the partial derivate of Eq. (8) with respect to uik and

setting the result to zero yields
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Solving l from Eq. (11), we have
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Combing Eqs. (12) and (10), the zero-gradient condition

for the membership estimator can be written as
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Similarly, taking Eq. (8) with respect to vi and setting the

result to zero, we have
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which is identical to that of FCM because in fact the pen-

alty function in Eq. (7) does not depend on vi. Thus, the

PFCM algorithm is given as follows:

PFCM algorithm

Step 1. Set the cluster centroids vi, fuzzification parameter

q, the values of c and e.

Step 2. Calculate membership values using Eq. (13).

Step 3. Compute the cluster centroids using Eq. (14).

Step 4. Go to step 2 and repeat until convergence.

When the algorithm has converged, a defuzzification

process then takes place in order to convert the fuzzy parti-

tion matrix U to a crisp partition. A number of methods

have been developed to defuzzify the partition matrix U,

among which the maximum membership procedure is the

most important. The procedure assigns the object k to the

class C with the highest membership

C u i ck i ik= =arg {max( )}, , , ,1 2 K . (15)

With this procedure, the fuzzy images are then converted to

crisp image that is segmentation.

4. Experimental results

In this section, the results of the application of the PFCM

algorithm are presented. The performance of the proposed

method is compared with that of the standard FCM algo-

rithm. For all cases, unless otherwise stated, the weighting

exponent q = 20. , e = 00001. , and g = 400 where the pa-

rameter g is selected experimentally in order to give appro-

priate results. A 3´3 window of image pixels is considered

in this paper, thus the spatial influence on the centre pixel

is through its 8-neighborhood pixels. It is important to note

the intensity value of all the images given below ranges

[0,255], and if the image is noisier, a larger parameter g is

then needed.

To evaluate the performance of the proposed approach,

tests were first realized on two synthetic images. First, we

generate a simple two-class synthetic image, whose inten-

sity values are 100 and 60, respectively, and the image size

is 256´256. The image is then corrupted by 5% Gaussian

noise, which means the signal to noise (SNR) is 100/5 = 20.

The original image is shown in Fig. 1(a) and the results of

FCM and PFCM are given in Figs. 1(b) and 1(c), respec-

tively. As it can be seen, without spatial information con-

straints, FCM algorithm cannot even separate the two

classes, while PFCM algorithm correctly classifies the im-

age into two parts without any noise existing in the seg-

mented regions. Second, a multiple-class synthetic image

has been created, in which the intensity values are 0, 255,

and 128, respectively, and the image size is 256´256. Ad-

ditive 10% Gaussian noise was then added to the image. To

get a better insight, the image is segmented by FCM and

PFCM into three corresponding classes with intensity val-

ues 255, 0, and 128, representing class 1, class 2, and class

3, respectively.

Figure 2(a) shows the test degraded noisy images. The

results of FCM algorithm and PFCM algorithm are dis-

played in Figs. 2(b) and 2(c), respectively. We observed

that the three regions are well brought out by these two al-

gorithms. However, with the FCM algorithm, the segmen-

tation result still has much noise especially in class 1 and

class 3, while the result used by PFCM algorithm is less

speckled and smoother. The number of misclassified pixels

with the two methods is counted during the experiments

and it is listed in Table 1. It can be seen from Table 1 that

the total number of misclassification pixels for the FCM al-

gorithm is nearly 63 times than that of the proposed

method. These two examples can demonstrate the incorpo-

ration of the spatial neighbourhood constraints into the

FCM algorithm can significantly improve the segmented

result in presence of noise.

Table 1. Number of misclassified pixels with FCM and

PFCM methods for Fig. 2(a).

Segmentation method FCM PFCM

Class 1 185 1

Class 2 42 1

Class 3 337 7

Total 564 9

The second type of example is a simulated magnetic res-

onance (MR) brain image obtained from the BrainWeb Sim-

ulated Brain Database [21]. This brain image was simulated

with T1-weighted contrast, 1-mm cubic voxels, 7% noise,

and no intensity inhomogeneity. Before segmentation, the

non-brain parts of the image such as the bone, cortex and fat

tissues should be removed. The class number of the image

was assumed to be four, corresponding to grey matter (GM),

white matter (WM), cerebrospinal fluid (CSF) and back-

ground (BKG). The parameter g is set to be 500 in this ex-

periment. Figure 3(a) shows a slice from the simulated data

set, Figs. 3(b) and 3(c) show the segmentation results ob-

tained by applying FCM and PFCM, respectively, and the

ground truth is given in Fig. 3(d). It is clearly seen that our
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312 Opto-Electron. Rev., 13, no. 4, 2005 © 2005 COSiW SEP, Warsaw



segmentation result is much closer to the ground truth. The

result of PFCM is more homogeneous and smoother than

that of the FCM algorithm, especially for WM, which again

indicates that our method is effective and robust to noise. To

measure the segmentation accuracy, we also apply the quan-

titative evaluation of performance by using the overlap met-

ric criteria [22]. The overlap metric is a measure for compar-

ing two segmentations that is defined for a given class as-

signment as the sum of the number of pixels that both have

the class assignment in each segmentation divided by the sum

of pixels where either segmentation has the class assignment.

Larger metric means more similar for results. The overlap

metrics of WM, GM, CSF, and BKG are given in Table 2. As

it can be seen from Table 2, the overlap metrics of WM and

GM have been increased greatly with our method, compared

to those of the conventional FCM algorithm.
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Fig. 1. Comparison of segmentation results on a two-class synthetic image corrupted by 5% Gaussian noise: the original image (a), FCM

result (b), and PFCM result (c).

Fig. 2. Comparison of segmentation results on a three-class synthetic image corrupted by 10% Gaussian noise: the original image (a), FCM

result (b), and PFCM result (c).

Fig. 3. Comparison of segmentation results on a MR phantom corrupted by 7% Gaussian noise and no intensity inhomogeneity: the

original images (a), FCM results (b), PFCM results (c), and ground truth (d).



In the last examples, there are two groups of real stan-

dard test images, which are named Lena and cameraman,

respectively. These images are introduced without adding

any type of noise. In both experiments, the class c number

is set to be 2. The original images are shown in Fig. 4(a),

where the top is Lena and the bottom is cameraman. The

results of the FCM algorithm and PFCM algorithm are pre-

sented in Fig. 4(b) and 4(c), respectively. As it can be seen,

both the FCM and PFCM algorithms can well extract the

object from the background in each image. However, it is

important to note the proposed method performs better for

the segmentation with more homogeneous regions such as

the face, the shoulder and the cap of Lena, and with least

spurious components and noises particularly in the grass

ground area of cameraman. The results presented here can

prove that our method is capable of coping with not only

noises but also artifacts in the image.

Table 2. Overlap metrics with FCM and PFCM methods

for Fig. 3(a).

Segmentation
method

WM GM CSF BKG

FCM 0.896 0.868 0.876 0.989

PFCM 0.977 0.931 0.894 0.991

5. Conclusions

We have presented a novel penalized fuzzy c-means

(PFCM) algorithm that is able to incorporate both local

spatial contextual information and feature space informa-

tion into the image segmentation. The algorithm is devel-

oped by modifying the objective function of the standard

FCM algorithm by a penalty term that takes into account

the influence of the neighbouring pixels on the centre pix-

els. A variety of images, including synthetic, simulated and

real images were used to compare the performance of FCM

and PFCM algorithms. Experimental results show that the

proposed method is effective and more robust to noise and

other artifacts than the conventional FCM algorithm in im-

age segmentation. It should be emphasized that if the algo-

rithm performs on an image with higher contamination in-

tensity, a larger parameter g should be set in order to pro-

vide better result. Future work will focus on adaptively de-

ciding the penalized parameter of this algorithm as well as

compensating for the intensity inhomogeneity while seg-

menting the image data.
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