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In this paper, an efficient method for object tracking based on nonparametric approach is presented. The density we esti-

mated is based on an adaptive kernel model, which is driven by the intensity difference between the target and the back-

ground. The background-weighted histogram for statistics of feature takes into account the relevance between the target and

background. What is more, this approach extends the range that is needed for searching object. The target model is updated

according to the change of the object and environment. Experimental results on real image sequences demonstrate its robust

performance in visual tracking and require less iteration computations when compared to other method.
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1. Introduction

Object tracking is a central theme in computer vision with ap-

plications ranging from surveillance to human-computer in-

terfaces, whose goal is finding and following moving objects

between consecutive frames. A variety of algorithms have

been developed for visual tracking, but they can be catego-

rized into two main kinds of methodologies, i.e., top-down

and bottom-up approaches [1]. Top-down approaches gener-

ate and evaluate a set of state hypotheses based on target

model, while the performance of tracking is largely deter-

mined by the methods of evaluating and verifying these hy-

potheses on image observations. To achieve robust tracking, a

large number of hypotheses may be maintained so that more

computation would be involved for evaluating them. The con-

densation algorithm, also known as particle filters [2], is a

typical top-down method for its robust performance in visual

tracking, but it has two insoluble problems. Firstly, it is not

real-time for the computation of large numbers of particles.

Secondly, the observed likelihood function and motion model

must be learned by some sample image sequences before

tracking is performed, so it can only be used to video analysis,

cannot be used to practical application such as spot surveil-

lance, and obviously, it may fail when the environment is

greatly changed. Bottom-up approaches generally tend to re-

construct the target states by analysing the image contents. It

might be computationally efficient, yet the robustness largely

depends on the ability of image analysis. To discriminate the

target from other objects and describe the correlation between

the appearance and the state of the object, the target represen-

tation is a fundamental problem. Tracking based on a rough

target model would not be robust.

Many parametric statistical techniques have been ap-

plied to object representation, which describe the appear-

ance of the object by statistics. Parametric approaches are

based on the assumption of specific forms of the features in

the images. Usually, image data are assumed to be nor-

mally distributed, and given known distributional forms.

Thus, parametric methods restrict the form of the statistic

to those for which distributional results are available, and

rely on many assumptions and approximations. Further-

more, parametric method such as learning Gaussian distri-

bution using EM [3] algorithm is very time-consuming,

which is inappropriate to real-time tracking.

On the other hand, the nonparametric statistical methods

do not necessarily depend on a presumed distribution model

of the object, thus they are more widely applicable. This ap-

proach tends to let the data guide a search for the function

which fits them best without the restrictions imposed by a

parametric model [4]. Colour distribution histograms is a

nonparametric approach which has many advantages for

tracking non-rigid objects, as they are robust to partial occlu-

sion, are rotation and scale invariant and are calculated effi-

ciently [5,6]. Kernel density estimation is another kind of

nonparametric technique, which has also been used as an

important data analysis tool [7]. Taking the advantages of

colour histograms and spatial kernel, Comaniciu [8,9] pro-

poses a nonparametric tracking approach based on mean

shift analysis (MST). It is deterministic and data driven for

climbing density gradient to find the peak of probability dis-

tributions, and track a distribution by maximizing the

Bhattacharyya measure between a model distribution and an

empirical distribution. However, the classically used kernel

cannot adapt to the changing of colour distribution histo-

grams [10]. What is more, it is unable to track targets with

large motion between two consecutive frames.
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We are interested in tracking non-rigid, complex ob-

jects with large motion under cluttered environments, for

those cases when traditional techniques are not applicable.

When tracking any kind of features in these cases, several

specific problems appear. In particular, there are always

difficult and ambiguous situations in real world generated

by cluttered backgrounds, occlusions, large geometric de-

formations, illumination changes or noisy data [11].

In this paper, we present an efficient visual tracking al-

gorithm (EVT), which integrates the advantages of the

background-weighted histogram with adaptive kernel den-

sity estimation. An adaptive kernel is modelled according

to the local histogram. In most cases, some of the target

features may be blend with a part of background, thus the

background information is also very important for the fea-

ture statistics. What is more, this approach extends the

range that is needed for searching object. Comparative re-

sults with other method are also provided.

This paper is organized as follows. In Sec. 2, an adap-

tive kernel model is proposed for the kernel-based tracking.

The background-weighted histogram and the target model

update process are described in Sec. 3. In Sec. 4, the track-

ing algorithm on video streams is applied and its good per-

formance is demonstrated.

2. Adaptive kernel model

The kernel or Parzen density estimation is one of the most

well-known techniques for nonparametric density estima-

tion. Given d-dimensional samples X1, X1,..., Xn drawn

from a population with density function f(x), the Parzen

density estimation at x is given by
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where k(×) is the kernel function and h is the kernel band-

width. Traditionally, it is assumed that k x dx( )ò = 1, k(×) is

symmetric, i.e., k x k x( ) ( )= - .

Let V be the set of pixels to be processed in the image, x

be the element in V that is currently being processed, and

I(x) be the colour value of a pixel. Generally, a unit flat

kernel is defined as
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where h is the radius of the neighbourhood in image space.

In the same way, the unit Gaussian kernel can be defined as
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For practical applications, the Gaussian kernel is not

used, since each pixel has the whole image as a neighbour-

hood. A mixture of a flat kernel and Gaussian kernel can be

used, called a truncated Gaussian kernel
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A problem with this kernel is that it treats everything

the same, in that it will preserve all objects within the im-

age if there are enough pixels in its neighbourhood with

similar intensity. By modifying the kernel to adapt to dif-

ferent local histograms, we can achieve at
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where S is the set of all the pixels in the neighbourhood of

x, satisfying S VÍ , and the function f(S) is defined as
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where M is the number of elements in the set S, and G is the

constant. The function Y(×) satisfies
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where z is the given threshold. As y(x) decreases, it likes a

flat kernel. Flat kernel tends to smooth out small objects, a

few pixels that are outliers but are still within h will push

the pixels toward the intensity of the majority of the pixels

in the neighbourhood. A few pixels of noises in an image

will have a low f(S) value, because the intensity difference

between them and their surrounding region is large. The

target for tracking usually is composed of many pixels in a

small area, so f(S) will be higher since there are many pix-

els with similar intensity close together. The high f(S) will

result in a high standard deviation Gaussian kernel which

doesn’t allow the background pixels to influences the in-

tensity of the target pixels too mach, since pixels farther

away from the pixel intensity will be weighted much lower.

It is obvious that a flat kernel tends to merge objects into

the background, while a Gaussian kernel tends to preserve

the targets better. Therefore, driven by the intensity differ-

ence between the target and the background, the truncated

Gaussian kernel can be adaptively modelled.

3. Tracking based on background weighted
histogram

In most applications, it is difficult to exactly describe the

target, and its model might contain background as well.

However, improper use of the background information may

affect the tracking efficiency, make impossible to measure

the similarity between the target and the new candidate.

Hence, our approach is to use the background information

for selecting only the striking parts from the representa-

tions of the target and candidate model.
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3.1. Target model representation

Here, we consider a target chosen for tracking as a defined

region of pixel locations {xi}i =1, ..., n in an image. Let

m = 1,..., m represent the colour feature bins in the target

model, and the function b x t Ri( , ): 2 ® m denotes the fea-

ture bins corresponding to the pixel at location xi with time

index t. Let { } ,...,gu u m=1 represent the colour feature distri-

bution of the background with the normalization constraint

guu

m ==å 1
1

. Assume the smallest nonzero value of gu is gs

and the area of the background equals to two times the tar-

get area, thus the background factor can be obtained by
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These background factors decrease the importance of

those features that have low gu, especially in the back-

ground area. With these definitions, the probability distri-

bution model of a kernel-weighted histogram in the target

region can be computed as
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where a* is the centre location of the kernel, and d is the

Kronecker delta function. To impose the normalization

constraint quu

m =-å 1
1

, the constant C is expressed as
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3.2. Candidate model representation

A more compact form can be expressed for the probability

distribution of the target model. For each feature vector

u , we can combine these vectors into a matrix

U u u um= [ , ,... ]1 2 . In the same way, we can define the ker-

nel function k x ai( )*- by K(a*), and define the back-

ground factor{ } ,...,du u m=1 by Du. Depending upon these sim-

plifications, we can rewrite the target model in a more con-

cise form

q K a U t D= ( ) ( )* . (11)

Assume we are now considering a candidate region

centred at a with subsequent time index ¢t . Thus the proba-

bility distribution model of a kernel-weighted histogram in

the candidate region would be

p a K a U t D( ) ( ) ( )= ¢ . (12)

3.3. Similarity measurement

The target tracking procedure is to find the most similar

candidate in terms of the features we are interested. This

process can be stated as follows, given the target model

distribution q and the candidate model distribution p(a),

finding out a location that maximizes the similarity be-

tween the target model distribution and the candidate

model distribution. To measure the similarity between the

probability density functions of two distributions, the Bhat-

tacharyya coefficient is an efficient and divergence-type

tool for statistical measurement. It can be solved by mini-

mizing the distance between two discrete distributions

d a p a q( ) ( ( ), )= -1 r , (13)

where r( ( ), )p a q is the similarity measurement. The equa-

tion above is equivalent to maximizing the sample estima-

tion of the Bhattacharya coefficient
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Applying the Taylor expansion around the values p(a),

the linear approximation of r(a) can be rewritten as
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It is assumed that the target candidate { ( )} ,...,p au u m=1

does not change drastically between any two consecutive

frames, so the equation above will always be feasible.

Since p(a) is independent of a, we can substitute Eq. (12)

for p au ( ), and r( )a can be rewritten in a new form
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By seeking the maximum mode of the density in the lo-

cal region, the kernel can be recursively moved from the

current location a0 to the next location a1 until achieving at

the density mode according to the relation of
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where g x k x( ) ( )= - ¢ . It is assumed that k(x) is derivable for

all x Î ¥[ , ]0 except a finite set of points. From the equation

above, we can find that the new location is the weighted

centroid of the sample points { } ,...,x i i n=1 . However, the

weights for these sample points are dependent on two parts.

One part is the weight wi on background-factored colour

features, and the other part is the weight from the kernel

function k(x) which assigns smaller weights to points far-

ther away from the centre point a0 of the target.
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3.4. Update of target model

In most cases, the image of target feature is influenced by

illumination changes, cluttered backgrounds and large geo-

metric deformation, therefore it is very important to update

the target model is for robust tracking. Let t Î ( , )01 be the

update coefficient, then the new feature model q* for the

target should be

q q p
* ( )= - +1 t t . (19)

The update coefficient t serves as a parameter that con-

trols the rate of the feature adaptation of the target model to

the candidate model. With the higher the illumination

change between the frames, the larger update coefficient

should be selected, thus the new feature model is more in-

fluenced by the candidate model. However, such high val-

ues may result in a stopped target to track. Of course,

smaller update coefficient denotes fewer changes of envi-

ronment.

4. Applying a tracking algorithm on video
streams

In order to analyse the performance of the proposed

method, two video sequences are tested in the experiments.

Our programs are performed on a Pentium IV 2.4 GHz

computer using Matlab language V7.0. The RGB colour

space is used as the feature space, and the target that we

want to track is chosen by hand in the first frame.

The first experiment is performed on the hockey video

sequence which has 188 frames of size 320´240. The tar-

get region that was selected initially with size 26´46. Fig-

ure 1 shows the hockey player is well tracked in partial oc-

clusion and clutter environment. The tracked target is

traced out by rectangular window. The number of iterations

required in our EVT algorithm for each corresponding

frame is compared to the MST method in Fig. 2. The aver-

age iteration required in MST method is 6.4168 per frame,

while the average iteration required in our proposed EVT is

4.0162 per frame. Thus, our approach needs less iteration

to find out the optimum mode.

Another experiment is performed on the tennis video

sequence which has 260 frames of size 176´144. The tar-

get region was initially defined with size 14´18. Figure 3

shows the head of the tennis player is well tracked in clut-

ter environment. The tracking target is traced out by rectan-

gular window. The number of iterations required in our
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Fig. 1. Tracking results of the hockey sequence; frame 5 (a), frame

20 (b), frame 35 (c), frame 45 (d), frame 59 (e), frame 90 (f), frame

128 (g), frame 158 (h), frame 168 (i), and frame 180 (j).

Fig. 2. The number of iteration required in the MST and our

proposed EVT.



EVT algorithm for each corresponding frame is compared

to the MST method in Fig. 4. The average iteration re-

quired in MST method is 4.4692 per frame, while the aver-

age iteration required in our proposed EVT is 2.6346 per

frame. Thus it is shown that our approach can arrive at op-

timum mode with less iteration.

5. Conclusions

In this paper, we described an efficient visual tracking

technique based on adaptive kernel model, which is

date-driven by local histograms. The background factor we

considered is very relevant to the target feature, since it is

difficult to distinguish them on the boundary region. Our

approach is robust to environment changes and noisy data

for the target model is dynamically updated according to

the corresponding frames. Experimental results demon-

strate that the proposed algorithm requires less iteration,

thus it is faster than other method in the literature.

References

1. W. Ying, “Robust visual tracking by integrating multiple

cues based on co-inference learning”, International Journal

on Computer Vision 58, 55–71 (2004).

2. M. Isard and A. Blake, “Condensation – conditional density

propagation for visual tracking”, International Journal on

Computer Vision 29, 5–28 (1998).

3. A. Logothetis, V. Krishnamurthy, and J. Holst, “A Bayesian

EM algorithm for optimal tracking of a maneuvering target

in clutter”, Signal Processing 82, 473–490 (2002).

4. J.R. Jimenez, V. Medina, and O. Yanez, “Nonparametric

MRI segmentation using mean shift and edge confidence

maps”, Proc. SPIE 5032, 1433–1441 (2003).

5. D. Comaniciu, V. Ramesh, and P. Meer, “Real-time track-

ing of non-rigid objects using mean shift”, Computer Vision

and Pattern Recognition 2, 142–149 (2000).

6. K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An

adaptive colour-based particle filter”, Image and Vision

Computing 21, 99–110 (2003).

7. G.D. Hager, M. Dewan, and C.V. Stewart, “Multiple kernel

tracking with SSD”, IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, I-790–I-797

(2004).

Opto-Electron. Rev., 13, no. 4, 2005 L. Li 329

Regular Issue Papers

Fig. 3. Tracking results of the tennis sequence; frame 10 (a), frame

50 (b), frame 80 (c), frame 100 (d), frame 170 (e), frame 185 (f),

frame 205 (g), frame 220 (h), frame 245 (i), and frame 260 (j).

Fig. 4. The number of iteration required in the MST and our

proposed EVT.



8. D. Comaniciu and P. Meer, “Mean shift: a robust approach

toward feature space analysis”, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 24, 603–619 (2002).

9. D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based ob-

ject tracking”, IEEE Transactions on Pattern Analysis and

Machine Intelligence 25, 564–577 (2003).

10. M.A. King, T.K. Lee, M.S. Atkins, and D.I. McLean, “Au-

tomatic nevi segmentation using adaptive mean shift filters

and feature analysis”, Proc. SPIE 5370, 1730–1737 (2004).
11. E. Arnaud and E. Memin, “Optimal importance sampling

for tracking in image sequences: application to point track-

ing”, ECCV 2004, LNCS 3023, 302–314 (2004).

An efficient object tracking method based on adaptive nonparametric approach

330 Opto-Electron. Rev., 13, no. 4, 2005 © 2005 COSiW SEP, Warsaw


