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The coupled-wave method (CWM) has been used to analyse diffraction on some periodic structures, i.e., on relief gratings

including metallized ones having sinusoidal relief as well as on one-dimensional and two-dimensional photonic crystals.

Exact boundary conditions were taken into account in numerical calculations. Grating polarizers have been analysed, prop-

erties of dielectric gratings wherein coupled-mode resonance occurs have been studied, diffraction efficiency has been cal-

culated for sinusoidal relief metallized gratings. Calculations were carried out for TE and TM polarizations. Band structure

of a two-dimensional photonic crystal has been calculated using CWM.
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1. Introduction

There is a great number of papers and monographs devoted to

the study of light propagation in periodic structures (volume

gratings, interference mirrors, photonic crystals, thin holo-

grams, relief gratings including relief gratings on metal).

Among them there are two monographs that can be men-

tioned here, one concerning volume gratings [1] and the other

concerning photonic crystals [2]. The monograph [1] summa-

rized the results of theoretical and experimental studies of vol-

ume gratings by means of approximation methods and the

main attention has been focused on TE-polarization wave dif-

fraction. Kogelniks paper [3] that dealt with all types of vol-

ume holograms and yielded good results, when the modula-

tion factor of dielectric constant of a periodic medium is much

less than one (<< 1), was the most characteristic and popular

work of that time. However, approximation methods are not

suitable to analyse periodic structures having significant mod-

ulation factors of dielectric constant. Therefore accurate sys-

tems of equations were obtained and accurate initial condi-

tions were defined using the Bloch-Floquets theorem based

on Maxwells equations [4]. One can deem that the exact the-

ory of diffraction on volume gratings [5], interference mirrors

[6], and relief gratings [7,8] has received completion in the

works by Moharam and Gaylord. These works have not re-

ceived wide publicity since the solution of the system of dif-

ferential equations can be only obtained using powerful com-

puters which were not available to the wide community of

scientists and engineers in the 1980s. In general, those calcu-

lation methods were called the coupled-wave methods

(CWM). An interest in exact solutions of diffraction problems

by means of numerical methods appeared in the 1990s when

high-speed PCs became reality. The modal method by Fourier

expansion and the modal method by modal expansion were

developed [9]. In these methods, an infinite dimensional sys-

tem of linear differential equations with constant or variable

coefficients can be obtained on the basis of Maxwells equa-

tions and the difference between them is due to exact bound-

ary conditions being taken into account using different tech-

niques. Therefore, these methods are considered to be identi-

cal and are called depending on the author of a paper either

CWM [10] or the Fourier expansion methods [11]. In Refs.

12 and 13, the systems of first-order linear differential equa-

tions are formulated that are identical to the equations given

in Ref. 11 but which are obtained by a way of variable ampli-

tude plane wave expansion of the electromagnetic field. The

Bloch-Floquets theorem is not used to obtain these equations

and, therefore, we believe that this method is more universal

and can be used in other problems. The initial conditions are

used in a different way and we suppose that this approach is

simpler and clearer than the approaches of other authors

[10,14–17]. Whereas there are no particular problems when

studying diffraction of TM-polarized light on periodic struc-

tures using CWM (even for the case of metallized gratings), it

is necessary to take into account a great number of diffraction

orders because of slow convergence in order to make an exact

calculation. In order to improve convergence (in order to get

the desired calculation accuracy one should use a system of

differential equations of the least possible dimension) for

TM-polarized waves a little modified system of equations was

proposed in Refs. 15, 16, 17, and 18, which has been obtained

using Fourier expansion of permittivity and its reciprocal. A

strict mathematical substantiation for such modification of the

system of equations for TM-polarized light diffraction is
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given in Ref. 11. A special attention should be given to Ref.

18 where the system of differential equations was obtained

which provides rapid convergence of solution for relief grat-

ings including the metallized ones for the case of TM-polari-

zation. The C-method or coordinate transformation method

was proposed to accelerate the analysis of TM-polarized light

diffraction for metallized relief gratings (e.g., with a sinusoi-

dal profile) [19,20]. All those methods are based on numerical

solution of the system of differential equations that can take

into account hundreds of diffraction orders. It is possible to

say that at the moment there are efficient methods to analyse

diffraction of light on various periodic structures, and these

methods are used to design various optical devices such as

polarizers with periodic arrangement of metallic bands [21],

narrow-band optical filters on the basis of coupled mode reso-

nance [22–26], and diffraction relief gratings [27]. Analysis of

diffraction gratings using CWM foresees that the periodic

structure is boundless in two directions, and in the third direc-

tion it is bounded by two parallel planes, the media beyond

the grating are homogeneous, and the boundary conditions are

defined from the continuity of the tangential components of

the strength of electric and magnetic fields on the planes that

bound the grating. For analysis of photonic crystals it is fore-

seen that they are extended to infinity in three dimensions and

permittivity may depend periodically from one, two and three

variables (one-dimensional, two-dimensional or three-dimen-

sional photonic crystals, respectively) [2]. In this case, a tradi-

tional analysis consists in solving of wave equation relative to

the magnetic field strength, the solution is reduced to eigen-

values, and, for instance, a matrix equation with dimensions

of more than 1000´1000 is used to analyse a three-dimen-

sional photonic crystal [28,29]. After finding a solution, the

frequencies of electromagnetic waves that can propagate in a

photonic crystal with the given value of the wave vector are

defined. It is obvious that high-speed computers are needed to

solve such problems. But even in this case the calculation ac-

curacy is low. On the other hand, when the coupled wave

equations [11–13] is carefully examined, one can conclude

that these equations can also describe the propagation of al-

lowed electromagnetic waves in a boundless photonic crystal

with periodic initial conditions.

Thus, the purpose of this work is as follows: to formu-

late the initial conditions for solving the diffraction prob-

lems and to show the efficiency of analysing various types

of diffraction gratings using our method [12,13], to find

methods of rapid search for submatrices of fundamental so-

lution matrix using spatial symmetry of the diffraction

problem, to show that it is possible to calculate the band

structure of one-dimensional and two-dimensional photo-

nic crystals using the CWM, and to for analysis of one-di-

mensional photonic crystals it is sufficient to solve a sys-

tem of two first-order differential equations (exact solu-

tion), and for two-dimensional photonic crystals it is neces-

sary to solve a truncated system consisting of the 2n

first-order differential equations that is equivalent to a sys-

tem of n2 in the traditional method [2].

2. A system of differential equations for
a diffraction grating. Initial conditions

A generalized diffraction grating is shown in Fig. 1. The

grating has the thickness d in the direction of z-axis and is

boundless in the xoy plane; its permittivity varies periodi-

cally along the x-axis with period L and can be also de-

pendent on z (e.g., for a sinusoidal relief grating). The first

medium that fills the whole space above grating (z < 0) has

permittivity e1, it is real and more than zero, the second

medium (grating) has dielectric constant e2(x,z) and can be

a complex quantity, and the third medium (z > 0) is charac-

terized with the constant e3.

In the first medium, in xoz plane, a plane wave falls

onto the grating at the angle q10 to z-axis. As a result of

light diffraction in the grating, secondary plane waves with

the amplitudes Rn (reflection amplitudes) propagate in the

first medium, and waves with the amplitudes Tn (transmis-

sion amplitudes) propagate in the third medium. The initial

equations [30] in the partial derivatives which are used to

obtain common linear systems of differential equations

[31] that describe diffraction on periodic structures are as

follows

rot
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where E, H are the electric and magnetic vectors of elec-

tromagnetic field, respectively, c is the velocity of light in a

vacuum, w = k c0 is the cyclic frequency, k 0 2= p l, and

l is the wavelength in a vacuum.

Besides, the permittivity of the second medium and its

reciprocal are expanded into complex Fourier series with

the following coefficients
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2.1. Equations and initial conditions for
TE-polarization

It is expedient to expand the electric and magnetic fields as

follows [12]

E e

H e e

( , ) ( )exp( )

( , ) [ ( )

x z G z jk x

x z F z F

y n
n

nx

x nx z nz

= -

= - +

å
( )]exp( )z jk x

n
nxå -

(4)

where ex, ey, ez are the unit vectors along x, y, and z are the

axes, respectively, Gn(z) is the electric field of a coupled

wave having index n, Fnx(z), Fnz(z) are the x and z compo-

nents of the magnetic field of a coupled wave having the

index n.

The wave vector knx is related to the wave vector k0x as

follows

k k nnx x= -0

2p
L

, (5)

where k x0 1 102= ( ) sinp e l q and n is the integer.

Substituting Eq. (4) into Eq. (1), taking into account

Eqs. (2) and (5), and equalizing coefficients before each

factor exp jn x
2p
L

æ
èç

ö
ø÷ to zero we obtain the following system

of differential equations
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Since the system of Eq. (6) contains the first derivatives

Gn and Fnx and a simple algebraic relationship exists be-

tween Gn and Fnz(k G k Fnk n nz= 0 ), we can exclude Fnz

from the system of equations and omit the lower index x in

Fnx. In a general case, n varies from –¥ tn +¥. In a certain

case of calculations, we must restrict ourselves to a finite

dimensional system, i.e., we must take into account N dif-

fraction orders, and as result we shall have system Eq. (6)

of 2N equations. The number of diffraction orders deter-

mines the calculation accuracy.

The system of differential equations, Eq. (6), can be

written as a matrix

&
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where B I1 0= - jk , B2
0

2
0 2

1
= -j

k
k jk

n np
e , I is the

unit matrix, k
n

2
is the diagonal matrix whose elements are

equal to knx
2 . e 2 np

is the Toeplitz matrix formed from

Fourier expansion coefficients e n z( ) in conformity with the

rule

e
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It should be noted here that matrices B1 and B2 are con-

nected one with other.

In accordance with Ref. 31, the solution of the system

of Eq. (7), may be represented as

G

F

G

F

A A

A A

G( )

( )

( )

( )

z

z
A

æ
èç

ö
ø÷

=
æ
èç

ö
ø÷

=
æ
èç

ö
ø÷

0

0

11 12

21 22

( )

( )

0

0F

æ
èç

ö
ø÷
, (8)

where the matrix A is the solution of a corresponding ma-

trix Eq. (7) in the interval [0, z] for initial unit matrix in the

point z = 0. Since the matrix trace in Eq. (7) is zero, det(A)

= 1 accordingly to Ref. 31. This result may be used effi-

ciently to monitor the accuracy of calculation. If the dielec-

tric constant of periodic medium does not depend on z, the

following relation is valid

A z z z( ) exp exp( )=
æ
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ö
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2

B

B
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Thus, accordingly to Eq. (8) we may write the follow-

ing matrix equations

G A G A F

F A G A F

( ) ( ) ( ),

( ) ( ) ( )

d

d

= +
= +

11 12

21 22

0 0

0 0
(10)

Completing algebraic system of Eq. (10) with a supple-

mentary system of equations that follow from the equality

of the tangential components of the electric and magnetic

field at the boundaries (z = 0 i z = d) of the periodic and ho-

mogeneous media, we may uniquely calculate Rn and Tn.

The wave amplitudes Rn and Tn of corresponding diffrac-

tion orders, which propagate into the first and third media,

we will regulate and write in the vectorial form R and T.

The algebraic systems of equations that arise from the con-

ditions at the boundaries are in vector form as follows [13]

R G V

C R F C V

T G

C T F

- = -
- = -

- =
- =
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0

0

0

1 1

3

d

d
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where V is the column vector whose components are equal

to Vn n= d 0 , i.e., to Kroneckers symbol when one index is

zero, C1 and C3 are the diagonal matrices whose elements

are equal to C n n1 1 1= e qcos and C n n3 3 3= e qcos , re-

spectively.

Cosines of propagation angles of diffracted wave in the

first and the third media can be expressed using corre-

sponding sines as follows

cos sinq q1
2

1 1n nj= -

cos sinq q3
2

3 1n nj= - -
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This notation enables selection of proper signs before

the cosines even when the propagated waves in the first and

the third media are damped waves (sin q1 1n > , sin q3 1n > ).

Using Eqs. (10) and (11) we can find all the unknown vec-

tors
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-

d
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Thus, in accordance with Eq. (12), knowing the subma-

trices A11, A12, A21, A22 of the matrix A(d) one can calcu-

late the amplitudes of all diffracted plane waves in the first

and the third media by means of matrix algebra and, conse-

quently, to determine diffraction efficiencies of all diffrac-

tion orders. The most complex problem for computer-aided

calculations is finding the matrix A(d), which, for the case

when the dielectric constant e2 does not depend on coordi-

nate z, is reduced to finding the proper numbers and proper

vectors of a matrix from Eq. (7), whose dimension is 2N ´
2N, where N is the number of diffraction orders taken into

account. The situation is a little bit simplified when the sys-

tem of the first-order, Eq. (7), is reduced to a system of the

second-order equations, however, with the dimension N.

These systems which are equivalent will be as follows

&&

&&
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When eigenvalues of the matrix B1B2 which are equal

to g n
2 and the corresponding eigenvectors that form matrix

S are found, the solution of Eq. (13) may be written as
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where Cg+, Cg–, Cf+, Cf–, are the vectors that are related to

integration constants and are determined byF(0) and G(0).

The matrix A1 can be calculated as follows: A1 =

SGS–1, where G is the diagonal matrix formed on the basis

of array of eigenvalues g gn n= 2 . If Cg+ , Cg- , C f + ,

C f - , are determined from the condition when z = 0 and

Eqs. (8) and (14) are compared, the following relations can

be written
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where exp( ) exp( )± = ± -A S S1
1

z zG .

Between the submatrices A11, A12 , A21, A22 , the fol-

lowing relation is valid

A A A A I11 22 12 21- = , (16)

that can be used to monitor the accuracy of calculation.

Thus, the finding of eigenvalues and eigenvectors of the

matrix B1B2 is the most cumbersome operation in calculat-

ing of R and T vectors. All the other calculations take sub-

stantially less time. We believe that this procedure is suffi-

ciently clear and rational.

The situation becomes more complicated when the di-

electric constant of the second medium depends on z (e.g.,

in relief gratings with sinusoidal relief). In this case, the

whole grating thickness d is divided into r layers, the thick-

ness of each layer being h d r= [5], and r can be more than

50. Within each layer we solve Eqs. (7) or (13) using the

matrix algebra methods, and after that we match the solu-

tions at the layer boundaries and between the grating and

the homogeneous media. In this case, it is necessary to

solve a linear algebraic system of equations where the

number of unknown values are N r[ ( )]6 4 1+ - . In other

words, the problem becomes rather cumbersome, espe-

cially for TM polarization. Therefore, a little bit different

algorithm is proposed to solve such problems. The matrix

A(d) for the grating can be represented as the product of

matrices of the corresponding layers
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In turn, the matrix A[ , ( ) ]h m h- 1 2 can be written as
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å

1 2 2
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where L is determined by the calculation accuracy. It can be

shown that the modulus of a maximal eigenvalue of the ma-

trix B is commensurable with k k knxmax max( )= -2
0 0

2e ,

and, if L > l, they are quite close if the number of diffrac-

tion orders taken into account is more than 10. Thus, for

rapid series convergence Eq. (18) the step length of grating

decomposition can be taken from the condition h k> 1 max .

Obviously, there should be an optimal step length of grat-

ing decomposition. The time needed for calculations using

Eq. (18) grows as h falls, but the time needed for calcula-

tions using Eq. (17) simultaneously increases together with

increase in accuracy of defining of matrix A(d).

2.2. Equations and initial conditions for
TM-polarization

The system of differential equations for TM-polarization

obtained in Refs. 10, 11, 12, and 13 is the following
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For better convergence of calculation results, it was

proposed in Refs. 16 and 17 to change insignificantly the

system of differential equations. The modified system of

equations is as follows
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The electric and magnetic fields will be written as
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where Gnz is determined from the algebraic equation

k F Gnx n np pz
p

= å2
2

p
l

e . At the same time Gnx has been

obtained through Gn.

System of Eqs. (19a) can be also written in a matrix

form like Eq. (7), and the matrices B1 and B2 will be the

next
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2
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np

e
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In a general case, these matrices do not commute, but

the products of B1B2 and B2B1 have the same set of

eigenvalues, and, respectively, the matrices S, that

diagonalize these two matrix products are different. The so-

lution of Eq. (19a) also can be presented in form of Eqs. (9)

and (10). The initial conditions at the boundary of media 1

and 2, and media 2 and 3, are taken into account by means

of the following algebraic systems of equations
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Solving the algebraic systems of Eqs. (10) and (21)

jointly, we obtain

G C A C A C A C A
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0 3 11 3 12 1 22 1 21

22 3 12
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where:

C n n1 1 1= e qcos , C n n3 3 3= e qcos , Vn n= 2 1 0e d .

Using Eqs. (21), (22), and (10) we can calculate Rn and

Tn, and also diffraction efficiencies of all the orders of dif-

fraction. The equivalent systems, relative to the intensities

of magnetic and electric fields are as follows
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After finding the eigenvalues of the matrix B1B2, which

are equal to g n
2 , and the corresponding eigenvectors that

form the matrix Sg, and the corresponding eigenvectors of

the matrix B2B1 that form the matrix Sf, the solution of Eq.

(25) can be written as
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where Cg+ , Cg- , C f + , C f - , are the vectors that are related

to the integration constants and are determined by F(0) and

G(0).

Matrix A1g can be calculated as follows: A S S1
1

g g g= -G ,

where G is the diagonal matrix formed on the basis of or-

dered sequence of eigenvalues g gn n= + 2 . Respectively,

matrix A1f is defined by A S GS1
1

f f f= - . Having deter-

mined Cg+ , Cg- , C f + , C f - , from condition when z = 0

and compared Eqs. (19a) and (26) we can write the follow-

ing relationships
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If e( , )z x is symmetric function relative to x, then be-

tween submatrices A11, A12, A21, A22 the following rela-

tionships are valid

A A A A A A I11 22 11 22 12 21= - =, , (26)

where the horizontal bar is the sign of transposition.

Thus, if in our solution we consider N diffraction or-

ders, the problem is reduced using matrix algebra methods

to finding eigenvalues and eigenvectors of matrices of N ´
N dimension, which is the most cumbersome operation

from the point of view of computer-aided calculations.

Other operations are reduced to reversion, multiplication,

and addition of matrices of the same order. Whereas in the
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diffraction problem in addition to symmetry e 2 ( , )x z there

is also a supplementary symmetry, i.e., the plane wave inci-

dence angle onto the grating in the first medium is zero, in

a case when N is an odd number the diffraction problem

can be reduced to solving a system of equations of the type

of Eqs. (13) and (23) of the dimension ( )N + 1 2.

3. Photonic crystals

Calculation of a band structure of photonic crystals using

the traditional method [2] is rather difficult problem, calcu-

lations becoming especially difficult for two-dimensional

and three-dimensional periodic structures. The traditional

method is mainly used to specify the wave vector compo-

nents in the first Brillouin zone and to find the allowed fre-

quencies at which the optical wave can propagate through

the photonic crystal without damping. When light propa-

gates in a reflecting-only grating [13] (one-dimensional

photonic crystal) or when studying diffraction on a grating

whose dielectric constant periodically depends on x and z,

in general, we search for the matrix A( )L z , where L z is the

period of photonic crystal along z coordinate. From the the-

ory of photonic crystals it follows [2] that a wave can prop-

agate in a photonic crystal without damping if the follow-

ing condition is satisfied
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. (27)

Thus, if the modulus of eigenvalue r of matrix A( )L z is

equal to one, then for the specified frequency (wavelength)

and for the specified wave vector k x0 the corresponding

wave vector k z0 exists with which the optical wave propa-

gates through the photonic crystal without damping. Ac-

cordingly, the eigenvector of matrix A( )L z determines

components of the field, using which the electromagnetic

field of the allowed mode can be calculated. Thus, the vec-

tor k z0 is

k z
z

0

1
=

L
arccos[Re( )]r . (28)

So, the analysis of photonic crystal using our method is

reduced to finding of matrix A( )L z and its eigenvalues and

eigenvectors, for which in the case of one-dimensional

photonic crystal it is necessary to solve a system of two

first-order differential equations [13], and for two-dimen-

sional photonic crystals, as revealed by practice, it is suffi-

cient to find matrix A( )L z of dimension 20´20.

The systems of differential equations that describe opti-

cal wave propagation in one-dimensional photonic crystals

for TE and TM polarized waves are the following [13]

TE-polarization

& ,

& ( ) .

G ik F

F i
k

k
G ik z G

x

+ =

- + =

0

2

0
0

0

0e
(30)

TM-polarization
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& ( ) .

G i
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k z
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F ik z G
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+ =

2

0
0

0

0

0

e
e

(31)

The matrix A( )L z for one-dimensional photonic crystal

has dimension 2´2 and can be expressed by

a a

a a

11 12

21 22

æ
èç

ö
ø÷
.

When take into account that A = 1 [31], we can see that the

eigenvalues of this matrix by a module are equal to one if

( )a a11 22 2 1+ £ , a11 and a22 are the real numbers for a

non-absorbing periodic medium [13]. Thus, in order to find

eigenvalues, it is necessary to know only the trace of the

matrix A( )L z . The band structure of the photonic crystal

taken from Ref. 2 was calculated using the proposed

method. The calculation results are completely coincident

with those given in Fig. 4 of Chapter 4 in Ref. 2.

In order to analyse two-dimensional photonic crystal, it

is necessary to have the matrix A( )L z , whose dimension is

determined by the number of diffraction orders taken into

account in calculations. For non-absorbing periodic struc-

tures and for both polarizations, it is quite sufficient to con-

sider only 11 orders of diffraction, i.e., matrix dimension in

this case is 22´22 and it has 22 eigenvalues. The eigen-

values can be divided into two groups, and each value of

the first group is related to a corresponding value of the

second group whose product is equal to one. This corre-

spondence between eigenvalues means that a wave can

propagate into opposite directions relative to z-axis. In

other words, we can have an even number of eigenvalues

equal to one by module that are mutually complex conju-

gated. Thus, the problem of calculation of the band struc-

ture is reduced to finding the matrix A( )L z . If the period Lz

can be divided into two or more intervals in which e( , )z x

does not depend on z, then it is expedient to find the matrix

A in each interval and to find the general matrix as the

product of matrices of individual intervals. To find the ma-

trix A( )L z it is expedient to use the methods described in

Sec. 2 of this paper.

4. Numerical calculations of analysis of periodic
structures

Using Eqs. (6), (19), and (19a), the calculations for various

periodic structures and for a two-dimensional photonic

crystal of a simple structure were carried out. The corre-

sponding periodic structures are shown in Fig. 2.

For the periodic structure in Fig. 2(a), for TE- and

TM-polarized waves, the grating parameters have been re-
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ceived at which the reflectivity from such a grating is prac-

tically equal to 1 (coupled mode resonance). All 11 orders

of diffraction were taken into account in the calculation.

The calculation was carried out for the grating with param-

eters e1 1= , e 2 361= . , e3 225= . , L = 706117. µm, and

d = 3.0798 µm. The received coefficient of reflection is

0.9999973 for TE polarization at 10.6 µm wavelength. The

maximum of reflection for TM-polarized waves moves a

little towards the long wavelengths. Figure 3 shows the de-

pendence of reflectivity from an incidence angle and a rela-

tive wavelength. For TM polarization, the solid curves

were calculated using Eq. (19), and the results shown with

dots were obtained using Eq. (19a). It follows from Fig. 3,

that there is no difference in the calculation results for

TM-polarized waves obtained using Eqs. (19) and (19a). In

other words, to calculate completely phase gratings (with-

out absorption), it is possible to use both systems of equa-

tions and they yield almost the same results even in the

case of relatively low number of diffraction orders.

Figure 4 shows the dependences of grating transmission

from grating spacing for both polarizations. These gratings

are consisting of periodically spaced metallic bands on a

dielectric substrate (grating polarizers). The calculations

were carried out for l = 085. µm, the metal was silver

( . )e 2 35 12= - - i , the mark-to-space ratio was 0.5, the thic-

kness of metalic film was 0.1 µm. Eleven diffraction orders

were taken into account in calculations of TE-polarized

waves, and for TM-polarized waves, the calculations were

made for 11 diffraction orders using Eqs. (19) and (19a),

and for 25 diffraction orders using Eq. (19a).

The dependences in Fig. 4 have essentially different char-

acters of grating transmission for various polarizations. When

L l ratio is small, the TE wave is completely reflected from

the grating, and transmission of TM-polarized waves is close

to 0.9. The calculations have indicated that the results ob-

tained using Eqs. (19) and Eq. (19a) taking into account 11

diffraction orders differ greatly, whereas there is less differ-

ence between the results obtained using Eq. (19a) taking into

account 11 (solid curve) and 25 (dots) diffraction orders.

Using Eqs. (19) and taking into acount 11 orders of

difraction, the dependence of grating transmission from

L l in the range of 0.05 to 2/3 has smooth character with-

out valleys near L l = 0 4. and passes essentially lower

than the curves obtained using Eqs. (19a). The curves re-

ceived using Eqs. (19a) and taking into account 11 and 25

orders of diffraction are a little bit different. When take into

account only 11 orders, the curve is smooth but it has one

deep valley near L l = 0 4. , and when take 25 orders, there

are many valleys but they are rather shallow. It means, the

system of Eqs. (19a) has to be used to analyze such a grat-

ing for the case of TM polarization. This conclusion is co-

incident with the results of Refs. 16 and 17.
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Fig. 2. Schematic representation of periodic structures, (a) a diffraction grating and (b) a two-dimensional photonic crystal.

Fig. 3. Dependence of reflectivity for a grating with coupled mode resonance. S is TE polarization, P is TM polarization. Fig. 3(a) is

dependence of reflectivity from incidence angle of plane wave onto a grating. Fig. 3(b) is dependence of reflectivity from wavelength.



Figure 5 shows the dependence of diffraction efficiency

of an alluminium metallized grating from a wavelength.

The grating has a 0.1 µm deep sinusoidal relief and the

groove frequency of 1800 gr/mm, i.e., its parameters coin-

cide with those of the grating produced by Richardson

Grating Laboratory [32, Fig. 8].

The calculations were made for Littrow scheme dif-

fraction taking into account 11 diffraction orders. For

TE-polarized waves, the coincidence with the experimen-

tal curve [31] is very good, the difference between the two

curves within the whole wavelength range is 0–3% of dif-

fraction efficiency. For TM-polarized waves, the coinci-

dence is only qualitative, the calculated dependence of

diffraction efficiency is by 20–25% different of the exper-

imental curve. Using Eqs. (19a) made the results even

worse. Therefore, to improve the accuracy of calculation

of diffraction of metallized relief gratings for TM-po-

larized waves it is necessary to increase the number of dif-

fraction orders taken into account and it is advisable to

use Eqs. (19) or the system of equations given in Ref. 18.

The system of Eqs. (19) yields better results than (19a) for

the same number of diffraction orders taken into account,

what is logically explained in Ref. 18 as a result of the

fact that the grating relief depth is less than the grating

spacing.

Calculation of the photonic crystal band structure

shown in Fig. 6 has been carried out only for TE-polarized

waves taking into account 11 orders of diffraction. A

two-dimensional crystal of a simple structure (Fig. 26) with

the same period of 1 µm along both axes was selected for

calculation. The dimensions of square rod were 4´4 µm2
.

Calculating the band structure when 11 orders of diffrac-

tion are taken into account it is necessary to find the

eigenvalues of matrix 22´22. In order to achieve the same

calculation accuracy using the traditional method [2] it is

necessary to find the eigenvalues of matrix with dimen-

sions 121´121, that lead to increasing of calculation time.

To confirm the calculation accuracy, kz was determined for

the values of k m ax = 2p , where m is the integer and var-

ies in the range from –4 to +4. For v = 002. , kz is equal to

0.189164 µm–1, i.e., variations were observed in the 7th

symbol after the point, and for v k z= - =02 2010. . µm–1,

i.e., variations appeared in the 4th symbol. Thus, taking into

account only 11 orders of diffraction gives a sufficient ac-

curacy of calculation of band structure of two-dimensional

photonic crystals.
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Fig. 4. Dependence of transmission of relief metallized gratings from grating spacing, T0 is the transmission in zero order of diffraction, T

is the total grating transmission, R T+ is the total coefficient of grating transmission and reflection. Fig. 4(a) is TE polarization and

Fig. 4(b) is TM polarization.

Fig. 5. Dependence of diffraction efficiency of a metallized grating

with sinusoidal relief from wavelength.

Fig. 6. Band structure of a photonic crystal, e21 1= , e22 89= . ,

a x= = =L L 1µm.
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5. Conclusions

This paper offers a description of the method for analysing

light diffraction on periodic structures. The analysis is

based on solving a linear system of differential equations

taking into account exact boundary conditions. The system

of equations is obtained on the basis of the Maxwell equa-

tion. The structure of equations for describing TM polar-

ized wave diffraction is more complex than the system of

equations for TE polarized waves. Respectively, for ana-

lysing of TM polarized wave diffraction of the higher num-

ber of diffraction orders have to be taken into account. This

is especially important for metallic diffraction grating. The

results of the diffraction analysis of TE and TM polarized

waves for various types of periodic structures such as grat-

ing polarizers, gratings with coupled wave resonance and

sinusoidal relief metallized gratings are given. The band

structure for a two-dimensional photonic crystal of a sim-

ple form has been constructed.
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