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A composite medium consisting of two sublattices of dielectric spherical particles of high permittivity and different radii em-

bedded in a dielectric matrix of smaller permittivity are considered. It has been shown that such a composite medium reveals

properties of an isotropic double negative media (DNG) in a limited frequency range, when resonance oscillations of H111

mode in one kind of particles and E111 mode in another kind of particles are excited simultaneously. The E111 resonance and

the H111 resonance give rise to the magnetic dipole momentum and the electric dipole momentum correspondingly. Averaging

the magnetic momentum and the electric momentum over the cells belonging to the appropriate spherical particles gives the

negative permittivity and permeability. The model of diffraction of a plane electromagnetic wave on a dielectric sphere is

presented and compared with the mixing rule based consideration. The results obtained are rather close. Distribution of the

electromagnetic wave outside the sphere is calculated. Influence of the dispersion of the sphere size and the dielectric

permittivity on the effective parameters of the DNG material is estimated.
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1. Introduction

Media with simultaneously negative permittivity and perme-

ability or, so-called, double negative media (DNG) is under

relentless interest of physicists and microwave engineers [1–3].

The most of practically realized DNG structures, which are

also known as left-handed metamaterials, are anisotropic [2]

whereas for some applications isotropic material is required.

Analysis of negative permittivity and permeability of an iso-

tropic medium formed by a lattice of perfectly conducted par-

ticles was performed in Ref. 4. The isotropic three-dimen-

sional left-handed metamaterials based on a symmetrical con-

figuration of a unit cell with split-ring resonators and wires

was suggested and analysed in Ref. 5. In Ref. 6, 3D isotropic

magnetic metamaterial with a single cell made of six planar

resonators with 90° rotational symmetry, placed on the faces

of a dielectric cube, was presented. It was confirmed by ex-

perimental investigations that the structure behaved as an iso-

tropic magnetic material.

The first model of the isotropic DNG material consist-

ing of small isotropic spheres regularly situated in a dielec-

tric background was introduced by Holloway and Kuester

[7]. In this paper, the use of two sets of spherical particles

is proposed. In one set, the spheres are made of a high-

permittivity dielectric, and in the other set, the spheres are

made of a high-permeability magnetic material. The reso-

nant dielectric spheres provide effective negative permit-

tivity, and the resonant magnetic spheres provide effective

negative permeability.

More interesting isotropic structure suitable for practi-

cal realization was introduced in Refs. 8 and 9. It was sug-

gested that the artificial material is composed of two sets of

dielectric spheres embedded in a host dielectric material.

The spheres are made from the same dielectric material and

have different radii. The dielectric constant of the spherical

particles is much larger than that of the host material. The

wavelength inside the sphere is comparable with the diam-

eter of the sphere and, at the same time, the wavelength

outside the sphere is large as compared with the sphere di-

mensions. By combining two sets of the spheres with suit-

able radii, different modes can be simultaneously exited in

the spheres, the magnetic resonance mode in one set of the

spheres and the electric resonance mode in the other set.

The previous theoretical consideration of the system

suggested was based on the known electrodynamics of a

composite medium [7,10]. A medium composed of a peri-

odic lattice of spherical particles considered as scatterers,

generates dielectric polarization and magnetization accord-

ing to the distribution of the scatterers and their polari-

zabilities. A mixture consisting of an array of the scatterers

embedded in a host media is effective medium relative to

the propagating wave. When the size of the spherical scat-

terers is small as compared to the wavelength in the host

material and is not small in the material of the scatterers,

the effective medium parameters become frequency-depen-

dent. The modelling of electromagnetic response of spheri-

cal inclusions embedded in a host material is based on the

generalized Lewin’s model [10], where the spherical parti-

cles with the radius a are arranged in a cubic lattice with

the lattice constant s. The incident electromagnetic plane
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wave propagating in the host material excites the certain

modes in the particles. These modes are not strongly

eigenmodes of spherical dielectric resonator but they can

be specified as H or E modes at the frequencies which are

close to the spherical cavity eigenfrequencies. The relative

effective permittivity eeff and the effective permeability meff

were calculated in Refs. 8 and 9 and compared with the re-

sults of full-wave analysis.

The main goal of this paper is to present a theoretical

description of the bi-spherical artificial DNG metamaterial

based on the theory of diffraction. When the resonant fre-

quency of E111 mode in a bigger sphere coincides with the

resonant frequency of H111 mode in a smaller sphere, the

DNG response is expected. The E111 resonance gives rise

to the magnetic dipole momentum of the spherical particle

and the H111 resonance gives rise to the electric dipole mo-

mentum. Averaging the magnetic momentum and the elec-

tric momentum over the cells belonging to the appropriate

spherical particles reveals the negative permeability and

the permittivity correspondingly. The distance between

particles is much smaller than the wavelength in the matrix

media. Therefore the averaging momenta mentioned can be

found in a quasi-static approach. At the same time, the

higher value of the dielectric permittivity of the spherical

particle material provides the electromagnetic resonance

inside the particles which is described in electrodynamics

approach. As a material for manufacturing the spherical

particles, one can use dielectrics with the high dielectric

constant (år > 200), in particular, ferroelectric single crys-

tals or ceramic samples.

2. Symmetry of bi-spherical DNG structure

Let us consider two sets of the spherical particles arranged

in the NaCl structure (Fig. 1). This structure is a member of

the cubic system of symmetry and pertains to the class

m3m. In the case of cubic symmetry, the second rank ten-

sors of all physical parameters of the media are diagonal

and characterized by the components of the same values

[11,12]. Thus, the permittivity and permeability tensors

have the following forms
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where the sub-indices eff are introduced to stress that the

permittivity and permeability are obtained as a result of av-

eraging electric and magnetic polarization of spherical par-

ticles embedded in the matrix. Body-centred and face-cen-

tred structures are characterized by the same forms of the

second order tensor as the simple cubic structure [11]. For

averaging of the polarization of spherical particles embed-

ded in the matrix, one needs to find the volume of the ma-

trix falling on each particle considered. The rigorous evalu-

ation of this volume in the crystal lattice is given by the

volume of the Wigner-Seitz cell [12]. For the lattice of cu-

bic symmetry, the volume of the Wigner-Seitz cell can be

evaluated as s3, where s is the distance between the nearest

neighbours of the two-component “crystal lattice” (Fig. 1).

In the case of ferroelectric spherical particles made

from perovskite single crystal belonging to the cubic sym-

metry system, or from ceramic samples, the symmetry of

the spherical particles does not influence the symmetry of

the permittivity or permeability tensor of the DNG media.

We should stress that the isotropy of the media consid-

ered is valid only for the second rank tensors. If one con-

siders the phenomena like dielectric nonlinearity or

electrostriction, which are described by fourth rank tensors,

the specific anisotropy of media formed by the embedded

spherical particles should be taken into account.

3. Electromagnetic field diffraction on dielectric
spherical particles

Different analytical models for the double negative (DNG)

medium description were introduced to describe the struc-

ture with the sets of spherical particles [7–10,13]. The

modelling of electromagnetic response of spherical inclu-

sions embedded in a host material is based on the general-

ized Lewin’s model [10]. Originally, the Lewin’s model

has been specified only for spherical particles with the

same radius a arranged in a cubic lattice with the lattice

constant s. The spheres are assumed to resonate either in

the first or second resonance mode of the Mie theory [14].

Expansion of the model for the case of two sub-lattices of

dielectric spherical particles with different radii makes pos-

sible to describe the DNG media [8,9]. The properties of

DNG media required can be observed in the frequency re-

gion, where the resonance of the E- mode in one set of par-

ticles and the resonance of the H- mode in another set of

particles are excited simultaneously. The improved model

of the bi-spherical structure was presented in Ref. 13. The

effective permittivity åeff for a material with two types of

inclusions having two different electric polarizabilities was
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Fig. 1. A periodic composite medium consisting of two sub-lattices

of dielectric spherical particles with different radii embedded in

a host.



calculated from the generalized Claussius-Mossotti relation

[13,14] taking into account the electric polarizabilities of

spheres in the magnetic resonance and in the electric reso-

nance mode. Important is a consideration of remaining

static electric polarizability of spheres in the magnetic reso-

nance modes, which is not equal to zero as in Refs. 8 and 9.

The numerical analysis of the bi-sphere structure [8] re-

vealed that the interference of the adjacent spherical parti-

cles is negligibly small. That makes possible to solve elec-

tromagnetic problem for each sphere independently of one

another. We consider diffraction of a plane electromagnetic

wave on a dielectric sphere. In principle, the problem is

solved in the book of Stratton [16]. Some results of solving

this problem, as applied to the bi-sphere structure, were

presented in Refs. 17 and 18.

Let us consider the diffraction of a plane electromag-

netic wave with an amplitude of the electric field E0 lin-

early polarized along x- axis. The wave propagates along

the z- axis [Fig. 2(a)]
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The wave number k2 will be defined later.

In order to fulfil the boundary conditions on the surface

of the spherical particle, with respect to tangential compo-

nents of electric and magnetic fields, expansion of the inci-

dent plane wave in terms of spherical function is used. The

spherical modes inside the sphere and spherical modes

propagating in open space outside the sphere are taken into

consideration as well. The boundary conditions give rise to

two pairs of non-homogeneous equations with respect to

complex amplitudes of the spherical functions inside and

outside the spherical particle.

The fields inside the spherical particle are presented in

the following form

r

r

E E e i
n

n n
a m ib

in i t n

n
n
in

o n n
in( ) ( ) ( )

( )
(=

+
+

-
=

¥

å0
1

1

2 1

1

w r

ne n1 ), (3)

r

r

H
k

E e

i
n

n n
b m i

in i t

n

n
n
in

e n

( )

( )

( )
(

= -

+
+

+
=

¥

å

1

0
0

1
1

2 1

1

wm
w

a nn
in

o n
( ) )

r

1

, (4)

where
r

mo e m n/ , , and
r

no e m n/ , , are spherical wave functions

(odd and even) [16]. As far as the incident wave in open

space is linearly polarized, the number m = 1 is taken in

Eqs. (3) and (4). The wave numbers are defined as

k k1 0 1 0 2 0 2 0= =w e e m w e e m, , (5)

where e0 and µ0 are dielectric permittivity and permeability

of free space, e1 and e2 are the relative permittivities of the

spherical particle and matrix material respectively. The dif-

fracted field outside the spheres is given in Ref. 16.

The solutions of the system of equations specified by

boundary conditions are resulted for amplitudes of the

waves inside the spherical particle in the following form:

• for the waves of magnetic type [Er = 0, Fig. 2(b), left]

a
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• for the waves of electric type [Hr = 0, Fig. 2(b), right]
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where r = k a2 , a is the radius of the spherical particle,

jn(z) is the spherical Bessel function, h zn
( )( )1 is the spherical

Hankel function of the first order, the sign [ ]′ means the

differentiation with respect to r or Nr, N = k1/k2.

Figure 3 represents the distribution of the electromag-

netic field components in line with Eqs. (2)–(4) for the

spheres with the dielectric permittivity åp = 400 surrounded

by the air (åh = 1). The normalized, to E0, field components

were calculated for the E111 mode [Fig. 3(a)] and for the

H111 mode [Fig. 3(b)]. Diagrams were plotted for values of

the polar angles È = p/4 and ö = p/4. Vertical dashed lines

correspond to the boundary of the spherical particles, a1 is
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Fig. 2. Spherical particle in the field of linearly polarized

electromagnetic wave and field distribution in the equatorial plane:

(a) dipole momentum of electric polarization of the particle P, and

dipole momentum of magnetization of the particle M (b) and (b)

mode charts of the dominant H111 and E111 modes in spherical

resonator with magnetic walls. Solid and dashed lines show the

magnetic and electric field lines, correspondingly.



the radius of the bigger spherical particle and a2 is the ra-

dius of the smaller one. Sizeable electromagnetic field at-

tenuation outside the spheres is observed. Field modules

are reduced å times at the distance less, than the sphere ra-

dius. That means that, if the appropriate distance between

the particles is chosen, there is no remarkable electromag-

netic interaction between the particles in the structure con-

sidered. In some certain points, a graph curve almost

reaches zero value. These are the points on a surface inside

the sphere where the components of electromagnetic field

are close to zero value. This can be explained by the exis-

tence of non-perfect magnetic walls on the surface of real

boundary of the dielectric spherical particle.

Analysis of Eqs. (6) and (7) is followed by the two im-

portant conclusions:

• at certain frequencies, modulus of the denominators of

the fractions of Eqs. (6) and (7) become to be minimum

what corresponds to the resonance phenomena but be-

cause of complex nature of the Hankel functions do not

lead to singularities,

• imaginary components of the Hankel functions deter-

mine the quality factor of the resonator, which is finite

even in the case of lossless material of the spheres.

Physically that can be explained by losses caused by a

radiation of the diffracted waves outside the sphere.

4. Effective permittivity and permeability
of bi-sphere lattice

The spherical particle electric dipole momentum Dx
E( )ori-

ented along the x axis and magnetic dipole momentum

Dy
M( )oriented along the y axis [Fig. 2(a)] are calculated as

follows
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While integrating the scalar product of the basis vectors
r r r

e e er , ,q j and
r r

e ex y, should be taken into account. The av-

eraged macroscopic magnetization and averaged macro-

scopic electric polarization can be found as the correspond-

ing dipole momentum divided by the volume of the cell

containing the dipoles [19]. Thus, one obtains the relative

effective permittivity and permeability
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Fig. 3. (a) Electromagnetic field components distribution for magnetic type waves; Er = 0 inside the sphere and (b) electromagnetic field

components distribution for electric type waves, Hr = 0 inside the sphere.



m w
w

w

r
eff x

M
D

s E
k

( )
( )

( )
( )

= +
3

0
2

1. (11)

After calculation of the integrals in Eqs. 8 and 9, in ac-

cordance with Eqs. (3) and (4), where the spherical wave

functions should be used [16], one obtains
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Here I(î) is the result of integration over the volume of

the particle, a1 and a2 are the radii of particles, a2 > a1. The

function I(î) has been approximated in the region 3 < î < 5

by the following simple formula

I( ) . ( . ) . ( )z z z= - + -01852 4 5 00438 4 2 . (14)

The frequency dependence of the wave amplitude for

the excited modes a
in

1
( )

and b
in

1
( )

determines the frequency

dependence of e r
eff( ) and m wr

eff( )( ). Considering the struc-

ture composed by two sub-lattices of the dielectric spheri-

cal particles with different radii, we can adjust these radii

to obtain the same resonant frequencies for H111 mode in

the smaller sphere and E111 mode in the bigger sphere. Fig-

ure 4 presents the simulated frequency dependence of

e wr
eff( )( ) and m wr

eff( )( ) for a1 = 0.748 mm, a2 = 1.069 mm,

s = 4 mm, dielectric permittivity of the particle e1 = 400

and tand = 10–3, and permittivity of the matrix e2 = 1.

One may see that at the frequency slightly above f =

10 GHz, both the permittivity e r
eff( ) and the permeability

mr
eff( ) are negative. Thus, in the rather narrow frequency

band around f = 10 GHz, the existence of isotropic double

negative media has been theoretically substantiated. Neg-

ative refraction bandwidth depends on the permittivity of

the spherical particles. The smaller value of permittivity

of dielectric spherical particles, the wider is the frequency

range where both effective permittivity and permeability

are negative. Negative refraction bandwidth dependence

on material constituent particles permittivity is presented

in Fig. 5.

The Clausius-Mossotti (Maxwell-Garnett) mixing rela-

tion and polarizabilities of spheres near the first two Mie

resonance modes can be also used to find equations for ef-

fective permittivity and permeability as it was done in Ref.

13. In this model, the remaining static electric polariza-

bility of spheres in the magnetic resonance modes was

taken into account. The following equations for the effec-

tive permittivity and permeability were obtained
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where ñe = k1a2, and ñm = k1a1,
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are the volume fractions, and
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Let us compare the frequency dependence of the both

effective dielectric permittivity and the effective magnetic

permeability calculated by using different models. Figures

6 and 7 present an example of effective permittivity and

permeability as a function of the frequency for three differ-

ent analytical models, i.e., Lewin’s model [10], improved

mixing rule [13] taking into account the electrical polari-

zability of spheres in the magnetic resonance, and the dif-

fraction model. The parameters of the constituent material

are å1 = 400, å2 = 1, tanä = 10–4, ì1 = ì2 = 1, a1 = 0.747

mm, a2 = 1.069 mm, and s = 4 mm.
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Fig. 4. The effective permittivity and permeability versus

frequency f0 = 10 GHz, åp = 400, åh = 1, ìp = 1, ìh = 1, a1 = 0.748

mm, a2 = 1.069 mm, and s = 4 mm.

Fig. 5. Dependence of negative refractive index bandwidth on

spherical particle permittivity for two resonance frequencies f1 = 10

GHz, f2 = 15 GHz and different loss levels.



The results are in general similar but they differ in the

resonant frequency and the magnitude of effective electro-

magnetic parameters of the medium. The resonant fre-

quency is slightly shifted in comparison with the Lewin’s

model when the improved mixing equation is used and is

shifted more remarkably to the higher frequency for the

diffraction model. The structure, containing three single

cells with the same characteristics as in legend to Figs. 6

and 7, was simulated by the full-wave analysis. Firstly,

structure consisting of four small spheres with the radius

r = 0.748 mm and then structure consisting of three big

spheres with the radius r = 1.055 mm, å = 400, tanä = 10–4

were simulated. Spheres were placed at the centre of an

air-filled rectangular waveguide with the height and width

equal to 4 mm, and the length 20 mm [Figs. 8(a) and

8(b)]. Boundary conditions were ideal electric conductor

(PEC) at the top and bottom of the waveguide and ideal

magnetic conductor (PMC) on the sides of the waveguide.

The incident electric field was vertically polarized. Then,

the structure consisting of both sets of spheres was mod-

elled numerically [Fig. 8(c)]. The results for scattering

matrix elements |S11| and |S21| are shown in Fig. 9. It can

be seen that there is a stop band around frequency

Modelling of isotropic double negative media for microwave applications
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Fig. 6. The effective permittivity as a function of the frequency for

three different analytical models, åeff 1 Lewin’s model (after Ref.

8), åeff 2 improved mixing rule model (calculated taking into

account the electrical polarizability of spheres in the magnetic

resonance) (after Ref. 13), and åeff 3 diffraction model. e1 = 400,

tanä = 10–4, e2 = 1 ì1 = ì2 = 1, a1 = 0.748 mm, a2 = 1.069 mm, and

s = 4 mm.

Fig. 7. The effective permeability as a function of the frequency for

three different analytical models: ìeff 1 mixing rule model (after

Refs. 8 and 13), ìeff 2 diffraction model e1 = 400, tanä = 10–4, e2 = 1

ì1 = ì2 = 1, a1 = 0.748 mm, a2 = 1.069 mm, and s = 4 mm.

Fig. 8: Three types of simulated medium: four small spheres r =

0.748 mm (a), three big spheres r = 1.055 mm (b), and mixture of

both kinds of spheres (c).

Fig. 9. Numerically calculated S-parameters for a slab consisting of

small spheres – dash-dot lines, big spheres – dot lines, and set of

both spheres (mixture) – solid line.



10.1 GHz in the case of negative permittivity or perme-

ability only. But, for the medium containing the both sets

of spheres there is a narrow pass band near the frequency

10.1 GHz. The frequency range of the electromagnetic

wave transmission corresponds to the double-negative

characteristics of the structure. Evidently, the resonance

frequency is close to that calculated by the diffraction

model. Resonance frequency is shifted from 10 GHz to

10.1 GHz. Pass band width has nearly the same value as it

was predicted by the diffraction model (Fig. 5). The stop

band after pass band arises from the third resonant mode

of the larger spheres.

5. Influence of distribution of size and
permittivity of spherical particles on DNG
characteristics

It has been shown in Refs. 13 and 20 that the statistical dis-

tribution of the spherical particle size, caused by produc-

tion inaccuracy, may affect values of the effective permi-

ttivity and permeability of the double negative medium.

We can also estimate this dependence using diffraction

model. According to Eqs. (12) and (13), the spherical parti-

cle radius influences the value of the effective permittivity

and permeability.

Dielectric sphere radius variation affects the value of

the resonance frequency which corresponds to the low fre-

quency threshold of the negative index range. Let us esti-

mate how the resonant frequency depends on the radius of

the constituent spherical particles. The electrical radius of

the sphere was defined previously as

N k ar = 1 , (19)

where a is the radius of the particle and k1 0 1 0= w e e m is

the propagation constant. Let us rewrite Eq. (19) in this

way

f
N

a
=

r
p e e m02 1 1

, (20)

where f is the frequency of the electromagnetic wave.

Values of the electrical radius of the resonant spheres

can be calculated from Eqs. (6) and (7) for different radius

a of the spherical particle. The resonance condition is pro-

vided by the minimum of modulus of the denominator in

Eqs. (6) and (7). For the given a, the values of electrical ra-

dius providing magnetic or electric resonance correspond-

ingly, the resonance frequency can be calculated.

Dependence of the resonant frequency on the sphere ra-

dius is shown in Fig. 10. This graph represents the fre-

quency on spherical particle radii dependence for two val-

ues of particles permittivity, 400 and 1000. Let us define

operational negative index bandwidth as half of full nega-

tive bandwidth so that frequency fluctuations in positive

and negative directions could be accepted. According to

Fig. 5, the negative index bandwidth for DNG medium

with spherical inclusions permittivity equal to 400 should

be about 16 MHz for 10 GHz resonant frequency. This im-

plies that the spherical particle radius accuracy should be

1.5 µm in this case.

In line with Eq. (20), the resonance frequency is also in-

fluenced by the permittivity of the dielectric material of the

particles. Figure 11 represents the dependence of the reso-

nant frequency on the spherical particle permittivity for

two different values of radius, 1 mm and 0.5 mm. To avoid

frequency spreading beyond the negative index bandwidth

of 32 MHz, the tolerance of the permittivity of material

should be ±0.5%.

Speaking of possibility of practical realization of such

artificial metamaterial one should mention that recent tech-

nologies allow producing dielectric spheres with the accu-

racy of about 1 µm. At the same time, the achievable accu-

racy of permittivity of the dielectric material with er >100

is about 5–20%. Despite this, it is really possible to select

samples with needed value of permittivity among a large

number of all manufactured samples.
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Fig. 10. Dependence of resonance frequency on sphere radius

for particles with åp = 400 and åp = 1000, Äf = 32 MHz, and Är =

3 µm.

Fig. 11. Dependence of resonance frequency on spherical particle

permittivity for particles with r = 0.5 mm and r = 1 mm; Äf = 32

MHz, and Äåp = 3.



6. Conclusions

The results obtained show that the composite medium con-

sisting of two sub-lattices of the dielectric spherical parti-

cles of high permittivity and different radii embedded in

the dielectric matrix of smaller permittivity can be used for

a practical realization of the isotropic DNG medium.

A sizeable attenuation of the diffracted electromagnetic

wave outside the spherical particle has been shown. That

follows by a possibility of neglecting spherical particle mu-

tual interactions, if the appropriate distance between the

particles is chosen and by considering each particle as a

single independent sphere. In this case, the effective dielec-

tric permittivity and the magnetic permeability can be cor-

rectly modelled by a diffraction of the plane wave on the

single sphere. Resonant frequency is strongly dependent on

spherical particle radius and material permittivity. A very

high manufacturing accuracy should be provided to obtain

artificial material with the desired properties (negative

permittivity and permeability).
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