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The light transmission through a dispersive plasmonic circular hole is numerically investigated with an emphasis on its

subwavelength guidance. For a better understanding of the effect of the hole diameter on the guided dispersion characteris-

tics, the guided modes, including both the surface plasmon polariton mode and the circular waveguide mode, are studied for

several hole diameters, especially when the metal cladding has a plasmonic frequency dependency. A brief comparison is

also made with the guided dispersion characteristics of a dispersive plasmonic gap [K.Y. Kim, et al., Opt. Express 14,

320–330 (2006)], which is a planar version of the present structure, and a circular waveguide with perfect electric conductor

cladding. Finally, the modal behaviour of the first three TM-like principal modes with varied hole diameters is examined for

the same operating mode.
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1. Introduction

At optical frequencies, circular dielectric waveguides with

metal cladding have been extensively utilized as probes for

near-field scanning optical microscopy (NSOM) [1,2]. To

obtain better resolutions for NSOM systems, the diameters

of the probe tips are usually reduced to dimensions much

smaller than the operating wavelengths of the incident

light. Yet, conventional thinking assumes that a probe tip

with a small aperture has a bad throughput property [3], the

power throughput is reduced to a quarter of the power of

the aperture dimensions. However, this limitation can be

overcome by exciting or coupling the surface plasmon

polaritons (SPPs) [2,4,5] due to the negative permittivity of

the metal cladding. Such a scheme allows the subwave-

length dimensions of the probes to be widely used with a

high throughput in current cutting-edge technologies, such

as biological imaging and probing [1], single molecule

studies [1], and microelectronic circuit characterization and

failure analysis [6]. Thus, understanding the fundamental

light propagation along the probe structure, i.e., a circular

dielectric waveguide with metal cladding, is very important

for the effective design of probes that play a critical role in

improving the overall performance of an NSOM system.

Another recent finding associated with circular dielec-

tric waveguides with metal cladding is enhanced light

transmission phenomena through a single subwavelength

circular hole in a thick conducting screen [7–9], which is

also contrary to classical notions [3]. The light transmission

process through a subwavelength circular hole with a finite

thickness also includes the existence of propagating modes

down to the guiding structure using the finite thickness of

the conductors between both aperture, where the propagat-

ing modes and free space modes couple and decouple with

each other. Thus, examining the subwavelength propagat-

ing modes guided along the structure is also crucial before

a further detailed analysis of the manifestations of the en-

hanced light transmission.

Enhanced transmission has already been reported

through subwavelength apertures on metal screens, includ-

ing subwavelength guiding structure supporting TEM

modes, e.g., subwavelength coaxial apertures [10,11] and

subwavelength thick slits [12,13]. The dimensions of the

waveguide cross-section can be reduced to much less than

the wavelengths due to the absence of a cutoff wavelength

for the TEM modes. In contrast, it is well known that metal

waveguides with a circular cross-section have cutoff wave-

lengths, i.e., the mode cannot propagate below a certain

critical diameter, if the metal is considered to be a perfect

electric conductor (PEC) [14]. Practically, at optical fre-

quencies, metals are no longer PECs, as the real parts of the

permittivity become negative. As such, an SPP mode prop-

agation can be propagated even when the diameter of the

hole is much smaller than the guided wavelength. Such

SPP mode propagations have already been investigated

along circular dielectric waveguides with plasmonic clad-

ding [15–19]. Furthermore, waveguide modes with modal

properties similar to those of circular PEC waveguides are
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also known to exist together with SPPs [20,21]. The possi-

bility of electromagnetic energy transfers along a long cir-

cular air channel with “real” plasma cladding has also been

proposed [22,23], where the propagation mechanisms are

in principle the same as those of the plasmonic response of

a hollow circular waveguide with metal cladding. Quite re-

cently, the effects of the plasmonic dispersion relation on

the transmission properties of subwavelength cylindrical

holes have been considered [24]. However, despite exten-

sive research, the guided dispersion characteristics of circu-

lar dielectric waveguides with plasmonic cladding still

need to be investigated further. More specifically, the ef-

fect of the diameter of a circular waveguide with dispersive

plasmonic cladding on the dispersion characteristics has

not been completely investigated. Thus, the guided disper-

sion characteristics along a subwavelength circular hole

with plasmonic cladding need to be investigated.

Accordingly, this paper theoretically examines the

guided dispersion characteristics of a circular air channel

surrounded by metal using its plasmonic permittivity re-

sponse, i.e., the Drude model. In particular, the role of the

subwavelength-hole diameter is taken into account. Some

new findings are discussed and compared with the charac-

teristics of other relevant guiding structures, such as

dispersive plasmonic gaps (DPGs) [25].

2. Dispersive plasmonic hole. Structure

Figure 1 shows a schematic illustration of the dispersive

plasmonic hole (DPH) under consideration, which is a cir-

cular air channel (region 1, r a< ) surrounded by perfo-

rated bulk metal (region 2, r a> ). The dielectric constant

of the air core and magnetic constants (relative permeabil-

ity) of both regions are identically assumed to be

e m mr r r1 1 2 10= = = . . The dielectric constants of metals at

optical frequencies can generally be fitted to the Drude

model as follows

e w
w

w w wt
r

p

j
( )

( )
= -

-
1

2

, (1)

where wp and wt are the plasma and collision frequencies,

respectively. Here, we chose f p p= =w p2 3600 THz,

which is similar to that for titanium (Ti) and already widely

utilized in other calculations [25–35]. The collision fre-

quency is given as [26–35], which is slightly smaller than

the plasma frequency, typically w wt < 01. p . Practically,

since a small collision frequency value has a minimal effect

on the dispersion characteristics, the effect of wt is disre-

garded for simplicity, i.e., wt = 00. . Another benefit of

choosing a real dielectric constant is to point out the dis-

tinction between the two operating modes, the SPP and cir-

cular waveguide (CWG) modes, as will be discussed later.

An additional Lorentzian resonance effect should be in-

cluded in Eq. (1), if the operating frequencies are much

lower than the plasma frequency [20,36]. However, in the

present study, eigenmode solutions become available with

relatively higher frequencies, i.e., near and above 1000

THz, as discussed in Sec. 4. As such, an approximate ex-

pression is used for the dielectric constant of the plasmonic

cladding, i.e., e w wr p2
2 21= - with w pp 2 3600= THz

as illustrated in Fig. 2. As expected, negative and positive

values for the dielectric constants occurred below and

above the plasma frequency, respectively. Plus, there was a

critical frequency of f fc p= =2 254558. THz, at which

the dielectric constant was negative unity. The significance

of the critical frequency on the guided dispersion character-

istics will be described in Sec. 4. Below the plasma fre-

quency, the refract ive index of the cladding

n r r2 2 2
1 2= ( )e m was purely imaginary due to the negative

value of the dielectric constant. In contrast, above the

plasma frequency, a positive real (but less than unity) re-

fractive index n r r2 2 2
1 2= ( )e m was obtained, as in the

case of conventional dielectric media, and plotted as a

dashed line in Fig. 2.
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Fig. 1. Schematic illustration of dispersive plasmonic circular hole.

The hollow core and infinite cladding are the free space and metal,

respectively. The dielectric constant of the metal can be fitted to the

Drude model.

Fig. 2. Dielectric constant for Ti-like metal cladding. Below the

plasma frequency, the relative permittivity is negative, and there is

a critical frequency of fc = 254558. THz at which the dielectric

constant for the cladding is negative unity. Then, above the plasma

frequency of fp = 3600 THz the dielectric constant is positive, at

which point the refractive index becomes a positive real value,

which is plotted by a dashed line.



3. Dispersive plasmonic hole. Characteristic
equations

The characteristic equations for a DPH [24] are literally

identical to those for plasma or metal cylinders embedded

in an infinite surrounding dielectric medium [37] if general

Bessel and Hankel functions are used to describe the fields

[38]. However, the characteristic equations for DPHs can

be treated in more detail if purely guided modes without

any loss, including radiation, are considered. As such, the

characteristic equations result from enforcing the appropri-

ate boundary conditions. The tangential field components

are divided into the axial components, as given in Table 1,

and the azimuthal field components, which can readily be

obtained from the axial components [14]. The characteris-

tic equations for DPHs can be given as F F G1 2
2= , where

F1, F2 , and G are the primary characteristic functions. The

details of the primary characteristic functions and other as-

sociated belongings are given in Table 1, where k ii ( , )= 1 2

is the transverse propagation constant in each region, k 0 is

the free space wave number, and b b= k 0 is the normal-

ized propagation constant, which is the propagation con-

stant normalized by the number of free space waves.

In the present case, two operating modes were consid-

ered, the SPP mode and CWG mode. Detailed descriptions

of both operating modes are discussed with numerical exam-

ples in Sec. 4. Jm ( )× and Im ( )× are ordinary Bessel and modi-

fied Bessel functions of the first kind and describe the fields

inside the boundary (r a< ) of each mode, respectively,

where m is the azimuthal eigenvalue. In both cases, the

fields along the cladding region (r a> ) are governed by a

normalized Bessel function of the second kind, i.e., K m ( )× ,

to satisfy the radiation condition at infinity. In the negative

permittivity region, i.e., below the plasma frequency,

the conditions for the SPP and CWG modes are

b m e> ( )r r1 1
1 2 and b m e< ( )r r1 1

1 2 respectively. How-

ever, above the plasma frequency, the conditions for the

CWG mode become ( ) ( )m e b m er r r r1 1
1 2

2 2
1 2> > due to

the real value for the refractive index of the cladding, i.e.,

n r r2 2 2
1 2= ( )m e , and the SPP mode cannot exist. When

there is no azimuthal variation, i.e., m = 0, the characteris-

tic equation is split into F1 0= and F2 0= for the TM0n

and TE0n modes, respectively. Meanwhile, if there is an az-

imuthal variation, i.e., m ³ 1, the characteristic equation

F F G1 2
2= can be rewritten using an empirical induction

procedure to distinguish the HEmn and EHmn modes as follows
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Table 1. Axial field components, transverse propagation constants, and primary and secondary characteristic functions

included in characteristic Eq. (2) for DPHs.
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For the axial field components, the propagation factor exp[ ( )]j t m zw q b- - is tacitly assumed and omitted. Am, Bm, Cm, and Dm are

constants.



Here, the secondary characteristic functions P, Q, and R

are also given in Table 1. The “±” signs in Eq.(2) are for

the HEmn and EHmn modes, respectively, which have simi-

lar dispersion characteristics to the TM0n and TE0n modes,

respectively. Thus, for convenience, the TM0n and HEmn

modes are called the TM-like modes, while the TE0n and

EHmn modes are called the TE-like modes. The characteris-

tic equations are numerically solved and numerical illustra-

tions with the normalized propagation constants versus the

operating frequencies shown in the next section.

4. Numerical results and discussion

4.1. Dispersion characteristics depending on hole
diameter

Figure 3 shows the dispersion characteristics for the Ti-like

plasmonic medium cladded DPHs with various hole diame-

ters of D = 150, 100, 70, 40, 10, and 2 nm. For the lowest

three azimuthal eigenvalues ( , , )m = 0 1 2 , the normalized

propagation constants were representatively obtained, as

higher order hybrid modes with m ³ 3 are believed to have

similar dispersion characteristics to the cases of m = 1 and

2. The shaded regions in Fig. 3 are the forbidden regions,

i.e., b m e< ( )r r2 2
1 2 , which occurred above the plasma

frequency of f p = 3600 THz. The solutions for the higher

order modes of the TM-like modes and all the TE-like

modes remained in the fast wave region, i.e., CWG mode

region. CWG modes existed both below and above the

plasma frequency. However, the sequence of successive

higher order mode generation was limited above the

plasma frequency. The EH21 mode for the D = 100 nm case

in Fig. 3(b) and EH11 mode for the D = 40 nm case in Fig.

3(d) had their cutoff on the line n r r2 2 2
1 2= ( )m e . Many

higher order modes are seen in Fig. 3(a), which were ob-

tained in the case of relatively larger hole diameter. The

higher order modes of the TM-like modes and TE-like

modes were observed to be suppressed as the hole diameter

decreased. Yet, it is interesting to note that, even at very

small subwavelength diameters, the three principal modes

( )n = 1 among the TM-like modes, i.e., the TM01, HE11, and

HE21 modes, still remained without being suppressed, as

shown in Figs. 3(e) and (f). Thus, investigating the disper-

sion characteristics of the TM-like modes became the main

focus, as they were able to propagate regardless of how

small the hole diameter was and exhibit subwavelength

guidance. Only the principal TM-like modes had guided

mode solutions in the slow wave region (b k 0 10> . ), cor-

responding to the SPP mode region. The normalized propa-

gation constants increased asymptotically to infinity as the

frequency approached the critical frequency of

f c = 254558. THz.

Otherwise, the dispersion curves continued smoothly to

the fast wave region and were finally cutoff (b k 0 0= ).

The cutoff frequencies for the TM01, HE11, and HE21

modes increased as the hole diameters decreased. With a

larger hole diameter, as shown in Fig. 3(a), the sequence of

the modes was HE11, TM01, and HE21, which was also pre-

viously observed by Novotny et al. [20], whereas for

smaller diameters, the sequence of HE11, HE21, and TM01

was noted. This observation was due to the material disper-

sion of the plasmonic cladding based on its frequency de-

pendent nature. The cutoff frequencies for the HE11 mode

were always lower than those for the HE21 mode, as shown

in Fig. 3. Meanwhile, the cutoff frequency for the TM01

mode in the case of Fig. 3(a) was found to be between

those for the HE11 and HE21 modes. However, in the cases

of Fig. 3(b)–3(f) with smaller hole diameters, the cutoff

frequencies for the TM01 mode were higher than those for

the other modes. As the diameter of the hole decreased, the

cutoff frequency for the TM01 mode increased towards the

plasma frequency ( )f p = 3600 THz , while cutoff frequen-

cies for the other modes approached the critical frequency

( . )f c = 254558 THz . With very small subwavelength diam-

eters, the propagation of the TM01 mode was a backward

wave (corresponding to the negative slopes in the disper-

sion curves), which only existed in the frequency region

between the critical and plasma frequencies. Also, forward

waves (corresponding to the positive slopes in the disper-

sion curves) were only available with the hybrid modes

near the critical frequency, which is inconsistent with pre-

vious results for DPGs [25], where eigenmode solutions for

the guided modes have been found to exist throughout the

frequency range. The SPPs propagated below the critical

frequency, and the waveguide modes also existed above the

plasma frequency even with a very narrow subwavelength

gap width. However, the guided dispersion characteristics

of the TM01 mode (for the DPH) and TM1 mode (for the

DPG) were quite similar (essentially the same) to each

other due to the plasmonic response of the metal cladding.

4.2. Relation with circular PEC waveguides

Since metals are usually modelled as PECs, the guided dis-

persion characteristics of a DPH need to be compared with

those of a circular PEC waveguide, which is the idealized

version of a DPH. The normalized propagation constant of

circular PEC waveguides for the TEmn and TMmn modes

are given respectively as follows [14]

b
b

= = -
¢æ

è
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ø
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ì
í
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where ¢ =p01 3832. , ¢ =p11 1842. , ¢ =p21 3054. , p01 2 405= . ,

p11 3832= . , and p21 5135= . . It should be noted that the

values of ¢p01 and p11 were the same, that is, ¢ =p p01 11=

3.832. This means, as expected, the TE01 and TM11 modes

for the circular PEC waveguide degenerated. Figure 4

shows the relation between the DPH and circular PEC

waveguides on the dispersion curves for the case D = 150

nm. It is well known that the cutoff frequencies of
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Fig. 3. Dispersion curves for DPHs in case of (a) D = 150 nm, (b) D = 100 nm, (c) D = 70 nm, (d) D = 40 nm, (e) D = 10 nm, and (f) D = 20

nm. The shaded region delimited by the dotted lines is the forbidden region with no propagating mode.



plasmonic waveguides are lower than those of PEC wave-

guides with the same geometry [24,25,39]. This property

due to the penetration of the evanescent fields into the

plasmonic medium was also observed with the present

structure.

Furthermore, the relationship of the guided dispersions

between circular waveguides with a PEC and the plas-

monic cladding was also clarified. The HEm1 (EHm1)

modes (m ³ 1) correspond to the TEm1 (TMm1) modes

[24,40], while the TM01 and TE01 modes for both cases

correspond to the modes with the same designations. As

the azimuthal eigenvalue increased, the difference between

the cutoff frequencies for the DPH and circular PEC

waveguides also increased. The TE-like modes such as

TE01, EH11, and EH21 modes all exist in the CWG mode re-

gions. As shown in Fig. 4(b), the EH11 and TE01 modes

were quite similar, yet did not degenerate any further. This

deviation was also due to the plasmonic response of the

metal cladding for the different polarizations. For smaller

diameters, e.g., subwavelength diameters, more conspicu-

ous differences were observed between the dispersion

curves for the DPH and circular PEC waveguides, possibly

because more power was propagated along the cladding re-

gion of the DPH, whereas such a phenomenon could not

occur in the PEC counterpart.

4.3. Dispersion characteristics of TM-like principal
modes

As shown in Fig. 3, the principal modes of the TM-like

modes, i.e., the TM01, HE11, and HE21 modes, supported

the SPP modes, which play significant roles in subwave-

length transmission. These modes including subwa-

velength SPP modes might be excited with some tapered

structures described in Ref. [4], for instance. Here, the

evolution of these modes relative to the hole diameter

was investigated, and more distinctive features obtained

based on plotting the modes with varied hole diameters

as a parameter for the same operating mode. Figure 5

shows the dispersion curves for the principal TM-like

modes of the first (lowest) three azimuthal eigenvalues,

the same data as in Fig. 3. In Fig. 5(a), the cutoff fre-

quencies for the TM01 modes increased up to the plasma

frequency as the hole diameter decreased. For smaller di-

ameters, i.e., D = 40, 10, and 2 nm, the propagations

were all backward waves.

For the hybrid modes, the dispersion curves for the

smaller diameters also had bifurcation points, where for-

ward and backward waves were generated simulta-

neously, as shown by the insets in Figs. 5(b) and 5(c). In

particular, eigenmode solutions for the hybrid modes with

small diameters, e.g., D = 2 nm, were only available near

the critical frequency, i.e., f c = 254558. THz, allowing a

wide single mode operation region for the backward TM01

mode. The backward waves along these nonperiodic

waveguiding structures might be utilized in wide applica-

tion areas of mode filters, switching, phase compensating,

frequency selections, and many others, as suggested in

Refs. 41 and 42.

For practical applications of the DPH, the attenuation

characteristics should be taken into account, which is, how-

ever, beyond the scope of this work. The propagation

length (or path length) of the DPH will be limited by the

nonzero value of the collision frequency wt in Eq. (3) and

some other relevant parameters [18]. As the hole diameter

decreases, the (subwavelength) modes might experience

higher attenuations because more electromagnetic fields

penetrate into the cladding region in evanescent forms.

Also, their attenuation behaviors with dissimilar azimuthal

eigenvalues are known to be different with each other

[18,20] due to the different field configurations.
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Fig. 4. Relation between DPH and circular PEC waveguide based

on dispersion curves. In both cases, the diameter is D = 150 nm (a)

TM-like mode for DPH and PEC correspondents, and (b) TE-like

modes for DPH and PEC correspondents. The cutoff frequency for

the DPH is downshifted when compared with the PEC

correspondents.
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Fig. 5. Dispersion curves for principal TM-like modes of first three azimuthal eigenvalues, i.e., (a) TM01, (b) HE11, and (c) HE21 modes.

The shaded regions delimited by the dotted lines are forbidden regions. The circles in the insets represent the bifurcation points where the

forward and backward waves branch off.



5. Conclusions

The light transmission along a DPH was numerically inves-

tigated and discussed. Especially, the hole-diameter de-

pendency of the dispersion characteristics was analyzed

with an emphasis on the subwavelength guidance. The re-

sults presented here were also compared with those for a

dispersive plasmonic gap, which is a planar version of a

DPH. Only the principal modes of the TM-like modes ex-

isted in the slow wave region, where the SPP modes were

supportable. The higher order mode of the TM-like modes

and all the TE-like modes were observed to be guided in

the fast wave regions, corresponding to the CWG mode. A

brief comparison of DPH and circular PEC waveguides re-

vealed that the cutoff frequency for the DPH shifted toward

the lower frequency region, which was even more conspic-

uous for higher azimuthal eigenvalues. Under very small

subwavelength-hole conditions, only the principal modes

of the TM-like mode were propagated. The TM01 mode as

a backward wave was observed to be guidable over the fre-

quency range from the critical frequency to the plasma fre-

quency. Higher order modes, such as the HE11 and HE21

modes, were found to exist within a very narrow frequency

region near the critical frequency. Although the plasmonic

medium used in this investigation was restricted to a

Ti-like medium, the present results can still be applied to

other DPHs with different metal claddings that have plas-

monic responses. Consequently, the present results can

provide some guidelines for the design of optical devices

based on the dispersion characteristics of a DPH.
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