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Coupling matrix and coupling coefficient concepts are applied to the interaction of an incident plane wave with a regular ar-

ray of small magnetized or polarized ellipsoids, placed in a homogeneous surrounding medium. In general case, the angle of

incidence and polarization of the plane wave upon an array of ellipsoids can be arbitrary. In this model, it is assumed that all

the ellipsoids are the same, and the direction of their magnetization is also the same. The direction of magnetization is arbi-

trary with respect to the direction of the propagation of the incident wave and to the boundary plane between the first me-

dium, where the incident wave comes from, and the array material under study. Any magnetized or polarized ellipsoid is rep-

resented as a system of three orthogonal elementary magnetic radiators (EMR) and/or three orthogonal elementary electric

radiators (EER). Mutual interactions of individual radiators in the array through the incident plane wave and corresponding

scattered electromagnetic fields are taken into account. The electrodynamic characteristics – reflection from the surface of

the semi-infinite array (in particular, containing uniaxial hexagonal ferrite resonators), transmission through the array, and

absorption are analyzed.
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1. Introduction

The development of microwave and mm-wave technology

and engineering of composite media, frequency-selective

surfaces, and metamaterials with desirable frequency char-

acteristics for various electromagnetic applications drives

an increased interest to behaviour of individual dielectric

and/or magnetic particles at their interaction with electro-

magnetic waves.

In particular, there is an interest in modelling metamate-

rials and metafilms containing periodic arrays of scatterers

with pronounced magnetic properties [1,2]. The application

of magnetic particles may give a number of favourable ad-

vantages. First, combination of spatial resonances due to pe-

riodicity of the structure with ferro-, ferri-, or antiferromag-

netic resonances within the scatterers may provide more

flexibility in designing the desirable frequency characteris-

tics. Second, the frequency characteristics of such metama-

terials can be tuned electronically by applying external bias

magnetic field. Third, structures containing magnetic parti-

cles may have nonreciprocal electromagnetic properties, es-

pecially at frequencies close to their resonances. Fourth, due

to the magnetic (spin) nature of resonance phenomena, such

metamaterials may be effective absorbers, where surface

currents are absent, and corresponding reflection is low.

Special attention should be paid to magnetic particles exhib-

iting natural ferromagnetic resonance, such as particles of

uniaxial hexagonal ferrites, since they have high internal

field of magnetic crystallographic anisotropy and do not re-

quire high bias fields for their resonance operation [3].

The objective of this paper is the development of a sim-

ple analytical model of a 3D periodic array of the similar

small magnetized or polarized ellipsoids, in particular, uni-

axial monocrystalline hexagonal ferrite resonators (FRs).

Interaction of a small crystallographically isotropic ferri-

te resonator saturated by the external bias magnetic field and

placed in a single-mode microwave waveguide was studied

long ago [4–7]. One of the approaches to obtain reflection,

transmission, and absorption coefficients at the interaction of

a FR with the incident electromagnetic mode is the solution

of so-called “self-matched field” problem [4]. The small FR

is represented as an elementary dipole, excited by the exter-

nal wave and re-radiating into the waveguide, and the inter-

action between the FR and the waveguide is then described

in terms of a coupling tensor or coupling coefficient [5,8,9].

The coupling depends on the shape, size, and physical prop-

erties of a ferrite resonator, mode structure within the wave-

guide, and the point, i.e., polarization of the microwave

magnetic field, where the FR is placed.

In this paper, the concept of the coupling coefficient is

applied to the interaction of an incident plane wave with a

regular array of small magnetized or polarized ellipsoids, in

particular, FRs placed in a homogeneous surrounding me-

dium. In general case, the angle of incidence and polariza-
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tion of the plane wave upon an array of ellipsoids can be

arbitrary. In this model, it is assumed that all the ellipsoids

are the same, and the direction of their magnetization is

also the same. The direction of magnetization is arbitrary

with respect to the direction of the propagation of the inci-

dent wave and to the boundary plane between the first me-

dium, where the incident wave comes from, and the array

material under study. Any magnetized or polarized ellip-

soid is represented as a system of three orthogonal elemen-

tary magnetic dipoles and/or three orthogonal elementary

electric dipoles. Let us call these systems “elementary mag-

netic radiators” (EMR) and “elementary electric radiators”

(EER). Mutual interactions of individual radiators in the ar-

ray through the incident plane wave and corresponding

scattered electromagnetic fields, including inhomogeneous

near fields and evanescent modes, are taken into account.

The electrodynamic characteristics – reflection from the

surface of the semi-infinite array (in particular, containing

FRs), transmission through the array, and absorption are

analyzed.

It should be mentioned that the description of linear in-

teraction between a plane wave and an array of dipoles is

not a new problem. The formulation of such interaction

given, for example, in the classical book [10], is based on

Ewald’s theory of a plane wave reflection from a semi-

infinite dipole crystal. However, this theory is not applica-

ble to the dipoles resonant due to their physical nature,

such as ferrites. Recently, since the interest to photonic

bandgap structures has drastically increased, there are

many papers on both analytical and numerical modelling of

arrays containing various dielectric or metallic inclusions

(see, for example, reviews in Refs. 11 and 12). However,

only Ref. 2 contains an analytical solution for plane-wave

reflection from a planar interface with a 3D lattice of small

magnetized ferrite spheres. This is an approximate solution

that neglects polaritons-evanescent waves that appear at the

plane boundary of the array. The solution in Ref. 2 is given

for a regular 3D structure with the same period along x, y,

and z coordinates. The incident wave is along of the coordi-

nate axes, and the ferrite particles are also magnetized

along one of the coordinate axes. Recently published paper

[13] considers the plane-wave diffraction on semi-infinite

photonic (or electromagnetic) crystal with small elements

of a general type, and gives the closed-form analytical ex-

pressions for the amplitudes of excited modes and scattered

spatial Floquet harmonics. The latter form a spectrum of

wave vectors for plane waves in a grid of scatterers, widely

used in antenna array formulations [14]. In Ref. 13, the in-

teractions between crystal planes are rigorously taken into

account through all Floquet harmonics for any distances

between the planes. These analytical expressions at the

stage of calculating modes of a half-space filled in with FR

can be used in our paper as well.

In this paper, we will consider arbitrary orientation of

magnetization of FR (or polarization of the corresponding

elementary electric radiator) and arbitrary angle of inci-

dence of a plane wave upon a 3D array of scatterers.

2. Fields of individual elementary magnetic and
electric radiators

2.1. Elementary magnetic radiator

Suppose that there is a single FR in a homogeneous sur-

rounding space (“base”) with the parameters eb and µb.

Since an FR is very small compared to the wavelength in

the host medium and periods of the array, its electric

polarizability may be neglected compared to the magnetic

polarizability, or magnetization (of course, this can be valid

only at lower frequencies and frequencies close to the mag-

netic resonances in a particle). Let represent FR as an

EMR, which is a superposition of three independent or-

thogonal magnetic dipole moments, each of them being

equivalent to thin slots in a perfect electric conducting

(PEC) screen, or a,

r r r r
p U x x U y y U z z

m
x
eq eq

y
eq eq

z
eq eq= + +D D D0 0 0 . (1)

where Ux y z
eq
, , are the equivalent voltages across the corre-

sponding thin slots, and Dx eq , Dyeq , and Dzeq are the cor-

responding widths of these slots. The magnetic dipole mo-

ments in x-, y-, and z- directions are
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,
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In Eqs. 2, mx y z, , are the components of the microwave

(or mm-wave) magnetic moment of the FR. They depend

on the external magnetic susceptibility tensor for the FR

(see Appendices A and B). Vf is the volume of the FR,

d ( )
r r
r r- 0 is the delta-function depending on the coordi-

nates of the point
r
r x y z0 0 0 0( , , ), where the FR is placed,

and of the point of observation
r
r x y z( , , ).

Suppose that there is a 3D array of EMR, as shown in

Fig. 1. Any EMR has the coordinates q x y zlmn lmn lmn( , , ),

where x lDlmn x= , y mDlmn y= , z nDlmn z= , and indices

l m n, , Î Á are integer numbers varying from -¥ to +¥ (zero

indices are for the element in the origin of coordinates). In

the particular case of a 2D array of radiators distributed

over the plane z = 0, the coordinates zlmn = 0, and the in-

dex n = 0 can be omitted. For brevity, let us introduce the

notation a = ( )lmn for an EMR,

r r r r
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x
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m
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The components of electric field re-radiated by this

EMR in spherical coordinates are
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The components of the magnetic field re-radiated by an individual EMR in spherical system are
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To further consider the 3D regular array of EMR, it is more convenient to work in the Cartesian coordinate system. The

unit vectors of the spherical and Cartesian coordinate systems are related as
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Then, the electric field components in the Cartesian coordinate system are
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and the corresponding magnetic field components are
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where the amplitudes for propagating and near-field terms are
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2.2. Elementary electric radiator

The 3D array of scatterers may be comprised not necessarily of magnetic particles, but dielectric or ferroelectric ones.

Also, even when considering magnetic particles, their dielectric properties may be of importance. For these reasons, an

individual elementary electric radiator (EER)
r r r r
p p x p y p ze

x
e

y
e

z
e

a a a a= + +0 0 0 should be considered along with the EMR.

The components of its re-radiated electric and magnetic fields can be written analogously to those for the EMR, using the

easily proved duality
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Thus, in the Cartesian coordinate system, the components of electric field of an individual electric dipole field are
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with the amplitudes Ga as in Eqs. 9.

The components of magnetic field radiated by an individual EER are
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3. An array of non-interacting EMR

First, let us consider fields radiated by a regular

three-dimensional (3D) array of non-interacting EMR in

the Cartesian coordinate system. The distance between any

point of observation p x y z( , , ) and the radiator at the point

q x y z( , , )a a a is

R x x y y z za a a a= - + - + -( ) ( ) ( ) .2 2 2 (13)

Since at this stage the EMR are assumed independent,

the total radiated field is the superposition of partial fields

(double or triple summation depending on 2D or 3D geom-

etry),
r r

r r

E E

H H

=

=

å

å

a
a

a
a

,

.

(14)

Then, the components of the fields of. Eqs. (7) and (8)

should be used to find the total radiated field of an array of

EMR, and the components of Eqs. (11) and (12) should be

used for an array of EER. The angles in Eqs. (7) and (8)

and Eqs. (11) and (12) are found from the geometry of the

problem,
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For a metafilm (2D case), in Eq. (15), the index n = 0. It

is important to mention that the scatterers in this formula-

tion may be not necessarily all the same. They might have

the same parameters from geometrical and material points

of view, but their excitation is not in the same phase. There

is a delay in excitation of “layers” of FRs along the direc-

tion of the wave propagation. Thus, if the incident wave is

propagating along the z-axis, the phase shift of the n-th

layer excitation compared to the layer in the plane z = 0 is

k nDz z , so that p p ex y z
m

x y z
m jk nDz z

, , , ,a = -
. For an arbitrary

angle of incidence of the plane wave upon a half-space of

FRs, the wave vector is
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k k x k y k zx y z= + +0 0 0 , and the

radius-vector of an individual FR at the point a is
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moment of an FR at the point a is
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4. Interactions between individual scatterers of
an array

Let the point of observation be moved from an arbitrary

point outside the array of scatterers p x y z( , , ) to a point

where one of the scatterers is situated, for example,

q x y z( , , )b b b , where index b = ( )l m n1 1 1 . Exclude the scat-

terer from this point. All the other scatterers induce the

field in this point determined by the sum of the terms, ex-

cept for a b= , where a = ( )lmn .
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To calculate the fields of Eq. (16) induced by the other

scatterers in the point of the particular scatterer b, one must

substitute R Ra ab® in Eqs. (7) and (8) for EMR, and in

Eqs. (11) and (12) for EER.

Along with the incident plane wave, the field due to the

other scatterers as in Eq. (16) affects the corresponding

electric and magnetic dipole moments of the scatterer

placed in the point b. For example, the microwave magne-

tization and the magnetic “dipole” moment of a ferrite el-

lipsoidal particle will be calculated as
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where,
r r r r

h h H h
inc scat inc

b b= + å , is the magnetic field of

the incident plane wave, and
t
c b

eq
is the equivalent external

magnetic susceptibility tensor for any FR, derived in Ap-

pendix A. In the general case, the field
r

H scat
å b produced by

the other EMRs has three components, though the
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plane-wave field
r

h
inc might have one or two components,

and the total field acting on any individual FR has three

components. Then, it is necessary to consider all three

components of the vector
r
mb , and in the general case
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is a nine-component tensor.

If there is an array of radiators, then the total electric
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the point b are
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where e
x y z

inc
b , ,

and h
x y z

inc
b , ,

are the electric and magnetic field

components of the incident wave (in the general case of

oblique incidence they depend on polarization and angle of

incidence). E
x y z

scat
å b , ,

and H
x y z

scat
å b , ,

are the fields produced

by the other scatterers in the point of observation. The ele-

ments of the coupling tensor
t
wb , relating the field re-radia-

ted by the FR and its magnetization (or polarization in the

case of a dielectric resonator) as Eq. (B2) in Appendix B,

and represented as Eq. (B12), are calculated through the

products of the corresponding magnetic field components

(propagation terms e jkR± should cancel out). So, the cou-

pling tensor for EMR of the array is

t
w

w w w

w w w

w w w

b

b b b

b b b

b b b

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 12 13

12 22 23

13 23 33

=

é

ë

ê
ê
ê

wm

b

b b b

b b b

b b b

0

2 2 2

2 2 2

2 2 2
2

V

N

h h h

h h h

h h h

f
x y z

x y z

x y zê

ù

û

ú
ú
ú
ú

.

(20)

The norm of this total field is found as in Refs. 8 and 9,

and it is also discussed in Appendix B,

ë ûN e h dS

S

b b b= - ´ *ò2
r r r

(21)

As soon as the coupling tensor
t
wb is found for any ele-

ment b of the array of scatterers, the corresponding equiva-

lent susceptibility tensor
t
c b

eq
can be found as Eq. (B13),

and then the microwave magnetization and magnetic “di-

pole” moment Eq. (18) can be easily calculated. They take

into account mutual interactions between the FRs in the ar-

ray. The resultant magnetic “dipole” moments then should

be substituted in formulas for calculating the total field pro-

duced by the array of elements of Eq. (14). The similar pro-

cedure can be done for scatterers represented as EER.

The expression for the transmission TH and reflection

GH coefficients (in terms of magnetic field) can be ob-

tained from the boundary conditions for the fields in the

cross-section of interest,

T h h HH
inc inc

rad

r r r

= + + (22)

and

GH
inc

radh H
r r

= - , (23)

where
r

h inc is the magnetic field of an incident plane wave.
r

Hrad
± are the propagating parts of radiated fields through

the bulk of array (positive direction) and backscattered

from it (negative direction), calculated through the summa-

tion of corresponding scattered fields of individual FRs, ex-

panded in a series of eigenmodes of a semi-infinite 3D ar-

ray of Eq. (B6) in Appendix B. Similarly, one can get the

reflection and transmission coefficients in terms of electric

field.

Complex reflection and transmission coefficients for

fields are related as

TH H= +1 G . (24)

The reflection, transmission, and absorption coeffi-

cients in the case of plane waves can be represented in

terms of the coupling coefficient h c , as shown in Eq.

(B14), Appendix B,

TH
c

=
+
1

1 h
; (25)

GH
c

c

=
-
+
h
h1

. (26)

The corresponding absorption coefficient is

a
h

h
abs

c

c

=
+

2

1
2

. (27)

It is easy to check that the power balance is always ful-

filled,

GH H absT
2 2

1+ + =a , (28)

where the reflection coefficient in terms of power is

GH

refl

inc

rad

inc

P

P

P

P

2 = =
-

, (29)

the transmission coefficient in terms of power is

T
P

P

P

P
H

tr

inc

rad

inc

2 = =
+

, (30)

and the absorption coefficient in terms of power is

a abs
abs

inc

P

P
= . (31)

5. Conclusions

The formulation presented herein allows for calculating re-

flection, transmission, and absorption coefficients for regu-

lar 3D arrays of magnetized or polarized ellipsoidal scatter-

ers, whose sizes are small compared to the wavelength.
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These scatterers are represented as three orthogonal ele-

mentary magnetic and/or three orthogonal elementary elec-

tric dipoles, abbreviated as EMR and EER. In particular,

these scatterers can be small monocrystalline ferrite ellip-

soids with pronounced uniaxial magnetic crystallographic

anisotropy, such as hexagonal ferrites. The plane wave in-

teracting with the array in this formulation can be of any

angle of incidence and of any polarization.

The presented algorithm uses the small perturbation

theory (when inhomogeneity is much smaller than the min-

imum considered wavelength) and the concepts of the cou-

pling matrix and coupling coefficient between the dipole

moments. In the 3D array, the phase shifts for the corre-

sponding layers excitation are taken into account. The total

field radiated by any EMR or EER includes both near-field

and far-field terms. Though individual inhomogeneities are

magnetically and electrically non-interacting in static

fields, the assumption about electromagnetically non-inte-

racting scatterers becomes invalid at higher frequencies,

larger sizes of scatterers, and smaller distances between the

individual scatterers. Magnitudes of a magnetic or electric

moment of an individual scatterer are calculated through

the coupling of the scatterer with both the incident wave

and the fields produced by the other scatterers in the point

where the given scatterer is placed. The particular case of

an array of FRs is considered, but the formulation can be

generalized for any system of small scatterers.

In future, the theory will be expanded to consideration of

inhomogeneities with distributed equivalent electric and mag-

netic currents, rather than elementary magnetic and electric

dipoles. This can be done using Galerkin integral equation

method, approximating the corresponding surface currents by

a number of physically reasonable basis functions.

The importance of this work is that it lays the theoreti-

cal basis for the analysis of electromagnetic wave scatter-

ing on any possible arrays of elements – not only magnetic,

but also electric and coupled electric and magnetic dipoles

inside the same inhomogeneity. Indeed, for modelling and

design of frequency-selective surfaces and metamaterials

(including those tunable) any type of elements in periodic

structures can be used – made of magnetic materials, di-

electrics, ferroelectrics, patches of different geometry on a

homogeneous dielectric substrate, apertures of different ge-

ometry on a conducting sheets, simple-connected and mul-

tiple-connected structures that can be described both in

terms of equivalent electric and magnetic currents.

Appendix A

External magnetic susceptibility tensors for
a crystallographically anisotropic ferrite resonator

Consider the Cartesian coordinate system (123) related to

the direction of the equilibrium magnetization
r r

M0
03 , as

shown in Fig. 2. Another Cartesian coordinate system (xyz)

is related to the direction of the bias external magnetic field
r r
H z0

0 . Assume that the monocrystalline uniaxial FR with

crystallographic axis c is magnetized up to saturation by

the bias field
r

H 0 . The conditions of
r

M0 equilibrium result

from the minimum of magnetic energy of the ferrite crys-

tal. First, the vectors
r

M0,
r

H 0, and
r

H A are co-planar, that is,

j j jH M= = . Second, the angles of the main vectors

shown in Fig. 2 are related as sin q = H A sin( ) ( )2 20 0q H ,

where H K MA = 2 1 0 is the magnetic crystallographic

field determined through the first anisotropy constant K1.

The coordinate system (xyz) results from two rotations of

the system (123): first rotation is on the angle +q about the

axis z, and second is on the angle j around the axis y. The

external susceptibility tensor relates external microwave

(mm-wave) magnetic field and the corresponding micro-

wave (mm-wave) magnetization as [3,4],

r t r

m h
ext= c (A1)

of an ellipsoid made of a crystallographically isotropic fer-

rite in the system (123) is

r
c

c k
k cm

ext

ext ext

ext ext

j

j= -
11

22

0

0

0 0 0

, (A2)

where for the non-zero Gilbert’s loss parameter aG , such

that the FMR line width is

DH H
G

G0 5
0

0
0. = =

a w
m g

a ,

the components of the magnetic susceptibility tensor are

calculated as
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Fig. 2. Orientation of the main vectors describing magnetic suscep-

tibility tensor of a uniaxial monocrystalline ferrite resonator.
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(A3)

In (A3), w m g0 0 0= H is the angular frequency corre-

sponding to the bias magnetic field, w m gM M= 0 0 is the

angular frequency associated with the magnetization of sat-

uration, w m gA AH= 0 is the angular frequency associated

with the field of crystallographic anisotropy. The perme-

ability of vacuum is m p0
74 10= ´ - H/m and the gyro-

magnetic ratio is g = ´176 1011. C/kg.

The tensor of a crystallographically anisotropic uniaxial

ferrite (without taking into account its shape) at an arbitrary

orientation of its axis of magnetic anisotropy with respect

to the bias magnetic field can be found using the equations

in Refs. 6 and 7. In the initial Cartesian coordinate system

(x,y,z), the susceptibility tensor is

t
c

c c c
c c c
c c c

=
xx xy xz

yx yy yz

zx zy zz

. (A4)

The components of this tensor can be obtained using

the coordinate transformation matrix, where the direction

of the equilibrium magnetization is determined by the an-

gles j and q with respect to the axes x and z, correspond-

ingly (see Fig. 2).

A A Azy z y=

=
-é

ë

ê
ê
ê

ù

û

ú
ú
ú

×
cos sin

sin cos

cos sinj j
j j

q0

0

0 0 1

0 q

q q
0 1 0

0-

é

ë

ê
ê
ê

ù

û

ú
ú
úsin cos

.

(A5)

t t
c cxyz zy zyA A= -

123
1. (A6)

From Eq. (A5), the transformation matrix is

Azy =
-

-

cos cos sin cos sin

sin cos cos sin sin

sin

j q j j q
j q j j q

q 0 cos

.

q

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(A7)

and the inverse matrix is

Azy
- = -1 0

cos cos sin cos cos sin

sin cos

cos sin si

j q j q j q
j j

j q n sin cos

.

j q q

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(A8)

The components of the external tensor
t
c xyz

ext can be

found from Eqs. (A4)–(A8) as

c c j c j q

c c
xx
ext ext ext

yy
ext ext

= +

=
11

2
22

2 2

11

sin cos cos ,

cos sin cos
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2
22
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22
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2

j c j q,

c c q c

+
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ext

xy
ext ext ext ) sin cos

( cos ) sin

2

1

2
222

2
11

j k q,

c c q c

+

= -

j ext
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ext ext ext j k q,

c c q j k q

-

= - +

j

j

ext
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ext ext ext

cos

sin cos sin sin
1

2
211 j,

c c q j k q j,

c

xz
ext ext ext
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1

2
211 sin cos sin sin
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2
2
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2
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11

c q j k q j,
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ext ext
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+

= - n sin sin sin

sin .

2

11
2

q j k q j,

c c j

-

=

j ext

zz
ext

(A9)

Appendix B

Coupling between the FR and electromagnetic field

The reaction of a FR to the incident field can be taken into

account using the self-matched field approach [3,4]. It is

assumed that the magnetization of the FR placed in the

point b is determined by the total magnetic field. This field

which is the sum of the field of the incident wave, scattered

by the other FRs,
r r r

h h Hinc scat
b b= + å , and the field

r

H scat
b

scattered (re-radiated) by the FR itself into the array space.
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Since the FR is a small ellipsoid, its magnetization is sup-

posed to be uniform, and it is related to the field through

the FR’s external susceptibility tensor,

r t r r

m h Hext scat
b b b bc= +( ). (B1)

The field scattered by the b-th FR can be written as

r t r
H jw mscat

b b b= - , (B2)

where
t
wb is the coupling tensor that depends on the inter-

action between the total array and an individual FR at the

point b. For further convenience let us represent the mag-

netization vector of Eq. (B1) in terms of the equivalent sus-

ceptibility tensor and incident magnetic field,

r t r

m h
eq

b b bc= . (B3)

Solving the system of Eqs. (B1) and (B2) for
r
mb in a ma-

trix form as

r t t t t r

m I j w hext ext
b b b b bc c= + -[ ] ,1 (B4)

one can get the expression for the equivalent susceptibility

tensor

t t t t t
c c cb b b b

eq ext extI j w= + -[ ] ,1 (B5)

where the unit tensor is

t

I =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0 1 0

0 0 1

.

The scattered field
r

H
scat
b can be represented as a sum of

normalized propagating and evanescent (near field) waves

– eigenmodes [9]. These are the eigenmodes of a semi-infi-

nite 3D array of elements [2,13],
r r

H C hscat
v

v
vb = ± ±å , (B6)

where v p q= ( , ) is the index of summation for the corre-

sponding Floquet modes
r r r r
h H jk rv v v= - ±max exp( )b

with wave numbers

r r r r r
k k k x k y k zv p q v

x
p
y

q
z± ±= = ± + +, ,0 0 0 k k

p

D
p
y

y
y

= +
2p

,

k k
q

D
q
z

z
z

= +
2p

, k k k kp q
x

p
y

q
z

, ( ) ( ) ,= - -2 2 2

k is the wave number in the surrounding medium (in partic-

ular, free space), and
r r r r
r x x y y z zb b b b= + +0 0 0 is the ra-

dius-vector to the point of observation b.

The coefficients of this representation are found using

Vainshtein’s approach valid for waveguides [9, Sections

76, 77],

C
N

p h dVv
v

m

V

v
± = - ò

1 r r
m

b
b

, (B7)

where N v are the norms of the eigenmodes. Vainshtein’s

approach can be extended for more complex structures

rather than waveguides, if the full set of eigenmodes is

known [9, Section 78]. Herein, the full set of Floquet har-

monics for a periodic array is used, and
r
p

m is the magnetic

dipole moment (or magnetic current) determined by Eqs.

(1) and (2),

r r r r
rr

p j m r r V em jkr

b b b bwm d b= - -
0 ( ) . (B8)

A norm of a Floquet mode is determined through the

condition of orthogonality of the full set of modes, and is

proportional to the complex power of the mode passing

through some unit cross-section S [9, Section 75],

N P e h dsv v

S

v= - = - ´ò *4 2 , (B9)

where e hn n, * are the complex amplitudes of the micro-

wave electric and conjugated magnetic field of the vth

Floquet mode, respectively. For the local scattered waves

by the FR at the impact of a plane wave, the individual

norms should be calculated as in Eq. (B9), while the fields

can be found using, for example, the rigorous approach de-

scribed in Ref. 13, or the approach in Ref. 15 for an ele-

mentary radiator (a magnetic dipole or an electric dipole) in

the vicinity of a planar dielectric layer (or a multilayered

structure).

Then, the coefficients of Eq. (B7) can be calculated as

C
N

V j m r r h e dV

j V

v
v V
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=
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x max max ) .+ +m H m Hy vy z vz r
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(B10)

The scattered fields in the positive and negative direc-

tions, according to Eq. (B6), are

r
rr

H j V e

j k x
p

D

q

D

scat jkr

pq
x

y z

b bwm

p p

b= -

± + +
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2 2

.
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+ +

å
N

m H m H m H

v

x vx y vy z vz r

v

( ) .max max max r

b

(B11)

The total coupling tensor
r
wb is obtained from Eqs.

(B3) and (B11),
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. (B12)

As it can be seen from Eq. (B12), the coupling tensor is

determined by the volume of the FR, Floquet mode struc-

ture, frequency of the electromagnetic signal, and a point in

the array, where the ferrite resonator is placed.

Following from Eq. (B5), the equivalent magnetic sus-

ceptibility tensor for the b-th FR in the array is related to

its external tensor through the coupling coefficient h bc ,

c
c

hb
b

b
ij

eq ij
ext

c

=
+1

, (B13)

where the coupling coefficient h bc is calculated through

the coupling tensor
t
wb as in Eq. (20),

h cb b bc
ext

I j w= + -det{ } .
t t t

1 (B14)
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