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In this work, different novel 3×1 multiplexer structures for being used in polymer optical fiber networks are proposed. De-

signs are compact, scalable, and of low consumption, capable of operating in a large wavelength range simultaneously 660,

850, and 1300 nm, due to the use of nematic liquid crystal cells. Light that comes from each input port is handled independ-

ently and eight operation modes are possible.

Control electronics has been made using a programmable integrated circuit. Electronic system makes available the man-

aging of the optical stage using a computer. An additional four optical sensors have been included for allowing the optical

status checking.

Finally, a polarization independent multiplexer has been implemented and tested. Insertion losses less than 4 dB and iso-

lation better than 23 dB have been measured. In addition, 30-ms and 15-ms setup and rise times have been obtained.

The proposed multiplexer can be used in any polymer optical fiber network, even in perfluorinated graded index one, and it

can be specially useful in optical sensor networks, or in coarse wavelength division multiplexing networks.

Keywords: multiplexer, liquid crystals, polymer optical fiber, coarse wavelength division multiplexing.
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Nowadays, the number of applications that use polymer op-

tical fibers (POF) is increasing quickly. In short distances,

less than one hundred meters, they have large bandwidth,

two visible wavelength division multiplexings have been

implemented over 20 meters POF in Ref. 1, allowing full

duplex communication. Another visible/near infrared wa-

velength division multiplexing over POF application is

shown in Ref. 2, a duplex data and a voice signal transmis-

sion are done at the same time. In addition, these fibers are

lightweight, immune against electromagnetic interferences

(EMI) and of easy installation. Therefore, POF is being

used in video transmission in medical equipment, or in

multimedia applications for civil aviation and high range

cars [3], or in optical sensor networks [4,5], where due to

its safety nature, they are made of inert materials and can

be used in flammable atmospheres where no risk of explo-

sion is caused even under malfunction operation.

Perfluorinated graded index POF (PF GI-POF) has a

low loss wavelength range from 500 to 1300 nm [6,7], al-

lowing the implementation of coarse wavelength division

multiplexing (CWDM) in high-speed networks and in re-

configurable optical networks for critical applications. Due

to the amount of optical networks, and their development

during last years, it could be interesting to perform optical

switching, even it must be necessary in redundant networks

used in critical applications where safety is fundamental,

and redundant paths are needed. Many different technolo-

gies have been reported for optical switching.

Nowadays, micro-electromechanical systems (MEMs)

[8,9] that use mobile parts are attractive because of their

large integration scale, their fiber-to-fiber coupling, high

crosstalk and speed. An additional large displacement opti-

cal fiber 1×2 switch is presented in Ref. 10. Switches based

on liquid crystal cells [11–16] are used frequently instead

of other technologies, they do not have mobile parts, need

low excitation voltage, and have low power consumption.

However, most of these systems have a complex structure

involving a great amount of components [11–13]. In Ref.

14, less components are used but a fiber optic circulator is

needed which complicates its integration. A liquid crystal

based optical switch using also polarizing beam splitter is

given in Ref. 15, but it only works at a single wavelength.

Another switch structure using a liquid crystal cell and a

polarizing beam splitter capable of working in a wide

wavelength range can be seen in Ref. 16.

Liquid crystal based switches work with nematic LC

(NLC) [11,13,15,17] or ferroelectric LC (FLC) [12,18].

Last ones exhibit fast response times, but they can operate

in a smaller wavelength range because FLC cell thickness d

should be different in order to obtain a 90� polarization

switch at each wavelength. The birefringence of this mate-

rial Än, depends on the wavelength ë, and the Än · ë product
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must be a constant to get the polarization switch desired.

Instead of that, only Mauguin’s regime (Än · d/ë >> 1)

must be kept if nematic liquid crystal cells are used. Pro-

posed structures in this work can operate with both types of

liquid crystals, but nematic liquid crystals have been se-

lected for the implementation because Mauguin’s regime

could be fulfilled simultaneously at the desired wave-

lengths 660, 850, and 1300 nm.

With these issues in mind, in sec. 2, different compact,

reconfigurable and broadband 1×3 multiplexer schemes are

proposed for being used in POF (even PF GI-POF) net-

works. All designs are formed by a reduced number of

components, where nematic liquid crystal cells and polariz-

ing beam splitter are included. A deep description of the

optical and electronic stage implemented in the 1×3 polar-

ization independent multiplexer is given in sec. 3, includ-

ing a brief description of the multiplexer’s control software

programme. Section 4 includes measurements done for

testing the implemented design. Finally, some conclusions

are given.
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An optical N×1 multiplexer is a device capable of joining N

input optical fibers in a single output fiber. Common opti-

cal multiplexers combine different wavelength sources in

the same optical fiber, thus, wavelength division multi-

plexing (WDM) over a fiber is performed. In this kind of

multiplexers, input ports are not interchangeable, each in-

put port must be excited by a pre-allocated wavelength

source. In this work, we propose 3×1 multiplexers where

inputs are wavelength independent, as they work in the

same way for different wavelengths. Time division multi-

plexing (TDM) can also be implemented by means of these

devices, even a mixture of a TDM and a WDM, i.e., differ-

ent fibers involving WDM can be temporally multiplexed

into a single fiber. Figure 1 shows a generic symbol of a

3×1 multiplexer, it is composed by 3 inputs and only an

output port.

Different optical 3×1 multiplexer architectures are de-

scribed. Proposed schemes can manage light that comes

from each input independently, thus eight different setups

are possible:

• only light from one port reach the output (three setups,

one for each port),

• light from two of the three input ports gets to the output

(three setups, one for each pair of ports),

• light of all the input fibers passes through the device

(one status),

• there is no light in the output fiber (last status).

This configuration makes possible more flexibility in

applications than wavelength multiplexer, because it can

also be used as a time division multiplexer independently

of the input light wavelength.

Active elements in the designs are twisted nematic liq-

uid crystal cells (TN-LC) working at 660, 850, and 1300

nm. These LC cells modify their optical behaviour depend-

ing on the voltage applied to them. When they are not ex-

cited, the input light polarization is shifted, but, when an

electric field is applied to them, the input light polarization

is maintained. Thus, light passing can be controlled with

the use of liquid crystal cells in combination with the con-

venient polarizers.

Proposed multiplexers are designed for being used with

polymer optical fiber (POF). Light coming out from POF

has a random polarization. The schemes shown in Figs. 2

and 3 are able to manage only one light polarization, then,

having insertion losses greater than 3 dB. The other scheme,
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Fig. 1. Symbol of a 3×1 multiplexer.

Fig. 2. Basic scheme of a 3×1 multiplexer.

Fig. 3. Alternative scheme of a 3×1 multiplexer.



shown in Fig. 4, can handle the two light polarizations, hav-

ing less insertion losses, and being polarization independent.

The simplest proposed structure, shown in Fig. 2, has a

reduced number of elements and the input polarizers (P–p)

filter out half of the input light. Three liquid crystal cells

(PS1, PS2, and PS3) can rotate or not each input port light

polarization, and depending on LC status, light would pass

or not through the second polarizer (P–s). Output lens (L4)

is used for focusing all the beams in the output fiber (P-4).

Input lenses (L1, L2, and L3) collimate polymer optical fi-

ber output light.

According to Fig. 2, each input light reaches the output

fiber when the corresponding liquid crystal cell is in OFF

status, so no electrical signal is applied to LC electrodes.

After the first polarizer, the remaining polarization is

shifted and passes through the second polarizer and gets to

the multiplexer output. Otherwise, when the liquid crystal

cell is in ON status, input light polarization remains and it

is filtered in the second polarizer, in this way, input light

does not reach the output. Each liquid crystal cell is con-

trolled independently, and in this way the eight multiplexer

operation modes can be configured.

An alternative scheme, working in the same manner, is

shown in Fig. 3. In this proposal, a polarizing beam splitter

acts like the second set of polarizers of Fig. 2. The isola-

tion, light that passes through the multiplexer when it is in-

active, is improved because polarizing beam splitter filters

more efficiently the polarized light.

The last structure, shown in Fig. 4, is explained in the

next section. It can manage the two polarizations and at

least an insertion losses improvement of 3 dB is expected.

This design has been implemented, and some measure-

ments are shown in sec. 4.
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In previous section, two polarization dependent multiplexer

schemes have been described, a 50% of each input light is

filtered. Reduction of insertion losses is possible if the

multiplexer can act over the two polarizations. In this sec-

tion, a more complex, but polarization independent, design

is explained. The input beam is divided into two polariza-

tions and each polarization is treated by different liquid

crystal cells but in the same way.

The proposed multiplexer can be divided in optical and

electrical hardware sections, Fig. 5 shows its block diagram.

Optical part manages the light that comes from each input

port, and it is in charge of allowing its pass through the de-

vice to the output port, or not. Electronic part controls the

status of the optical part and allows the user to control the

multiplexer by means of a computer using specific software.

Each part is described in the next subsections.
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The proposed optical scheme is shown in Fig. 4. It has

three input ports P-1, P-2, and P-3, and a single output port

P-4. The device elements are two polarizing beam splitters

(PBS 1 and PBS 2), six liquid crystal cells (PS1–PS6),

three polarizers (Pp), and lenses (L1–L4).
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Polarizing beam splitters divide the non-polarized inci-

dent light beam in two different polarized beams, s-polari-

zation is deflected 90� while p-polarization passes through

the device. Polarizers eliminate s-polarization of its inci-

dent light. Three lenses (L1–L3) are used for collimating

the light that comes from each input port and the remaining

lens (L4) is used for focalizing light in the output fiber.

Light coming from each input port is divided in two po-

larized beams when passes through the first PBS. Three of

the liquid crystal cells (PS1, PS2, and PS3) act over

p-polarization beams and the others operate over s-polari-

zation beams (PS4, PS5, and PS6). In addition, liquid crys-

tal cells work in pairs, one for each input port, PS1–PS4 act

over light coming from port one, PS2–PS5 over port two,

and PS3–PS6 over port three.

The second beam splitter acts as an analyzer, depending

on the corresponding liquid crystal status, the beam is de-

flected 90�, s-polarization, or continues straight, p-polari-

zation. On the other path, the polarizers do the same work,

depending on the corresponding liquid crystal status, light

passes through the polarizers, p-polarization, or not, s-pola-

rization. Finally, the last lens focalises all the available

light beams in the output port.

According to the scheme, when the corresponding pair

of liquid crystals is in OFF state, no voltage is applied to

them, polarization is switched and each optical path contin-

ues to the output fiber. One beam is deflected 90� and the

other passes through the polarizer. When the pair of liquid

crystals is in ON state, incident light polarization is main-

tained and the light does not reach the output fiber. One

beam passes through the second polarizing beam splitter

and it gets lost, the other beam is filtered in the polarizer.

An optical path is active when light that comes from the

corresponding port reaches the output port, and it is inacti-

vate otherwise. In this way, a port is active when the appro-

priate pair of liquid crystals is in OFF state, and it is inac-

tive when those liquid crystals are in ON state.
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Control of the 3×1 multiplexer is carried out by electronics.

Six output signals are generated for exciting liquid crystal

cells. A serial communication is provided for modifying

the status of the multiplexer using a computer. Additional

feedback information is possible thanks to four optical sen-

sors. In this way, if a 10/90 optical coupler is used in each

port of the multiplexer, the optical power can be measured,

and proper operation of the multiplexer is checked.

Figure 5 also shows the block diagram of the electronic

part. The design is divided in three different stages, digital,

analogue, and feedback stages. Digital stage is the centre of

the design and generates the signals needed for controlling

the rest of the system. Analogue adapt stage modifies sig-

nals voltage for liquid crystal requirements. Feedback stage

converts optical power coming from each multiplexer port

to digital values, serving as entries for the digital part.

Digital part is implemented in a programmable inte-

grated circuit, a field programmable gate array (FPGA). In

these devices, a hardware description of the electronics is

programmed, and multiple configurations are allowed, for

this reason, the improving and debugging of the designs is

quite easy.

Scheme of the digital stage is shown in Fig. 6. The sta-

tus register stores the multiplexer operation mode, one of

the eight possible setups. An 8-kHz square wave is gener-

ated by the square signal generator and six different signals

are used to control their state. The square wave will be ap-

plied to the liquid crystal pixels that are active, in ON sta-

tus for an inactive port, and no excitation, zero volts, when

the cells are in OFF status, for an active port.

Analogue adapt stage is in charge of applying 8-kHz

square wave to the corresponding liquid crystal cells de-

pending on the output provided by the digital part. A volt-

age conversion is carried out, in this way the continuous

component of the square wave is eliminated, because it

could damage the LC cell, and its amplitude is adjusted to

the adequate value for exciting liquid crystal cells. Three-

volt amplitude is enough for the switching of the used liq-

uid crystal cells, but the implemented design allows modi-

fying this value.

In the feedback stage, a four-channel, parallel, analogue

to digital converter transforms the optical sensor measure-

ments in a digital eight bits bus. Digital stage continuously

request samples to the converter and stores them in an inner

memory.

Control of the multiplexer is done by means of a com-

puter using RS-232 serial communication. A serial inter-

face and an additional serial output control are available for

allowing data transfer. A subsequent electronics adapt volt-
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age values to the protocol specifications. By this mean,

multiplexer operation mode can be switched and the user

can ask for the optical power measurements and check the

proper operation of the device.

���� "�����
������
������

A serial communication allows remote operation of the de-

vice. In this way, an application has been programmed for

allowing the control of the multiplexer using a computer.

Users can select which input ports are active or inactive.

Due to the device’s implementation, there are no restric-

tions about how many optical paths are active at the same

time, even the three ports can be active at the same time.

The program is sending and requesting information

continuously to the device. In this way, every modification

of the configuration can be sent and checked immediately.

In the same way, the user can select which optical measure-

ments are displayed in the program window.
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Static and dynamic measurements have been carried out for

characterizing switching voltage, insertion losses and isola-

tion of the multiplexer, at a single wavelength. A function

generator and a laser have been used for all these measure-

ments. Experimental set up is designed to generate signals

as the ones to be provided by the designed electronics.
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Figure 7 shows the experimental set up used for doing the

measurements. Each port has been measured independently

for avoiding interchannel noise. A visible diode laser at

650 nm (620–680 nm) and 5.0 mW (7 dBm) from Power

Technology Inc. has been used. An iris diaphragm has been

used at the laser’s output for limiting the beam’s spot, and

in this way no light is out of the active part in each liquid

crystal cell. There are no input lenses (L1, L2, and L3) be-

cause the diode laser includes collimation optics. A 97-cm

length plastic optical fiber joins multiplexer’s output with

the measuring device to be characterized. Output beam is

focused in the optical fiber by means of L4 lens. Two differ-

ent measurement systems have been utilized, on one hand, a

557B Rifocs commercial optical power meter, on the other

hand, an Infineon SFH 350 V phototransistor with a 100-Ù

resistance. A Hewlett Packard function generator has been

used for exciting liquid crystal cells. And a Tektronix digi-

tal oscilloscope is utilized for measuring voltage when the

phototransistor acts as optical sensor.

#��� "����������	
������

This section refers to the measurements done when the ex-

citation of the liquid crystal cells is maintained during a

long period of time. The same 8-kHz square wave is ap-

plied to the pair of liquid crystal cells that form an optical

path. Signal’s amplitude is modified in each measurement

from 0 V to 4 V. In this way, switching voltage of liquid

crystal cells, insertion losses and isolation can be obtained.

Figure 8 shows the transmission obtained for the three

ports. It can be observed that the three curves are similar.

Ports are active from 0 V to 1 V and they can be considered

that ports are inactive when the amplitude exceeds 3 V. In

this way, insertion losses of the multiplexer are less than 4

dB, and the isolation, relationship between active status

and inactive status of each port, is more than 23 dB. The

measured optical power after the diaphragm was –6.9 dBm.

Table 1 shows the losses and isolation measurements ob-

tained for each port.

It is supposed that at zero volts a maximum of transmis-

sion is expected, and when the liquid crystal cell is swi-

tched on, the transmission would be minimum, but it does

not happen exactly in this way, it seems that the maximum

and the minimum are a bit shifted. This may occur because

there is not a good alignment. When the voltage begins to

increase, liquid crystal molecules start to rotate incident

light polarization, and there is more transmission, in the

same way, after liquid crystal cell are completely switched,

there is a minimum of transmission. For this reason it can
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be supposed that there is a small error in the alignment be-

tween the two polarizing beam splitters, the polarizer and

the liquid crystal cells. Correcting this problem, at least a

decibel improvement can be achieved in both, insertion

losses and isolation.

Table 1. Insertion losses and isolation of a 1×3 multiplexer.

Port Insertion (dB) Isolation (dB)

P1 3.9 23.2

P2 3.0 23.5

P3 2.9 23.9
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This section refers to the measurements when optical paths

are switching on/off repeatedly. In this case, an 8-kHz and

3-V amplitude square wave is applied during 50 ms and 0

V for other 50 ms, in other words, a square envelope of 10

Hz is used for modulating the 8-kHz square wave. As in

previous section, the same signal is applied to the pair of

liquid crystal cells that form each optical path. A digital os-

cilloscope and an optical sensor (Infineon SFH 350 V pho-

totransistor with a 100 Ù resistance) is used to measure opti-

cal power. Figure 9 shows an image captured from the digi-

tal oscilloscope, liquid crystal’s excitation signal is dis-

played in the upper part of the picture, and the response of

the multiplexer is viewed in the lower section.

The same excitation has been applied to the three multi-

plexer ports and similar results are obtained. Figure 10

shows the optical power losses measured, the upper one

corresponds to port two, while the other ports have equiva-

lent performance. In Table 2, several temporal parameters

are shown, rise time is less than 20.5 ms and down time is

less than 5.2 ms. ton, time interval since voltage is switch-

ing off until optical path is active, is less than 30.5 ms and

toff, time interval since voltage is applied until optical path

is inactive, is better than 12 ms. These measurements are in

accordance with liquid crystal properties, it is common that

relaxation times are larger than molecular orientation

times, and the values obtained correspond with previous

characterizations. On the other hand, it seems that insertion

losses are slightly greater than in static measurements, but

they are always less than 4.5 dB.

Table 2. Response time of a 1×3 multiplexer.

Port ton (ms) trise (ms) toff (ms) tdown (ms)

P1 29.2 20.0 12.0 5.2

P2 30.4 20.4 12.0 4.8

P3 28.8 14.8 10.8 4.8

The proposed multiplexer can work at different wave-

lengths, 660, 850, and 1300 nm. It has been only tested at

660 nm, but a characterization of liquid crystal cells, with

similar properties to the ones used in the multiplexer, has

been previously made at 808 nm [16]. The measurements

have been made with the liquid crystal cell placed between

two polarizing beam splitters acting as cross-polarizers.

Figure 11 shows the transmission obtained when different

amplitudes and frequency square waves are applied to the

liquid crystal cells. Insertion losses of 0.9 dB and an isola-

tion of 12 dB have been measured at 808 nm, while 0.7 dB

and 14 dB were obtained at 660 nm, respectively. Relax-

ation time of 33 ms was obtained for the tested cells.

Values obtained at 660 nm are similar between samples

used in the multiplexer and the ones tested previously, for

this reason is expected that their behaviour at 808 nm

would be also similar. A subsequent characterization at

1300 nm will be made in the near future.
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Different configurations for a 3×1 multiplexer with eight

operation modes have been proposed with simple, com-

pact, and scalable structures. They have wide wavelength

range operation thanks to the use of twisted nematic liquid

crystal cells that are capable of working at 660, 850, and

1300 nm, even at the same time. In addition, these devices
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Fig. 9. Excitation signal and multiplexer response.

Fig. 10. Multiplexer losses from dynamic measurements.



need low excitation voltages and have low power con-

sumption.

A polarization independent configuration has been de-

veloped, and experimentally tested. Insertion losses less

than 4 dB and isolation better than 23 dB have been mea-

sured, but this value could be improved with a better align-

ment. In addition, 30-ms and 15-ms setup and rise times

have been obtained.

Control electronics using a reconfigurable device has

been implemented, capable of modifying the multiplexer

operation. In addition, the status of the multiplexer can be

checked thanks to four optical sensors that allow the mea-

surement of the optical power in each port. A computer ap-

plication has been programmed allowing the remote con-

trol of the multiplexer.

N-input multiplexer can be implemented using larger

polarizing beam splitters, more liquid crystal cells and a

bigger output lens. The developed electronics can be easily

modified to allow for the new amount of inputs due to the

use of a programmable integrated circuit, and duplicating

or multiplexing analogue electronic circuits.

Finally, the proposed scheme can be used in optical net-

works as a switching device. It could be interesting its use

in coarse wavelength division multiplexing (CWDM) net-

works due to wide bandwidth or even in optical sensor net-

works because it can be used as a typical electronic multi-

plexer but in optical domain.

It can be interesting the use of a Savart plate, which

separates light’s polarization in two parallel beams, instead

of the polarizing beam splitters. In this way, less optical

components are needed and more linear device behaviour

is expected.
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