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7. Introduction

The investigations and development of fiber-optic gyroscopes
require the mastering of their theoretical analysis. The fun-
damental requirement of such an analysis is a simple mat-
hematical description with simultaneous possibility’ of regar-
ding a variety of partial solutions and preservation of uniform
description of the whole device. The Jones calculus fulfilling
these requirements is presented in this paper.

A fiber-optic gyroscope is the technical application of
a Sagnac interferometer [1]. The optical part of this device, built
in a so-called minimum configuration [2] (Fig. 1), allows to
determine a rotation rate Q by measuring the created nonrecip-
rocal phase shift A® between two light beams propagating
counter wise. The phase shift A®is detected as a change of light
intensity / at the interferometer output [3]:

HAD) =B + A-cos (AD — @,), AD=K-2 (1a, b)

where B is an average intensity level, A is an intensity scale
factor, @, is a phase bias-offset, and K is a constant factor
dependent on the sensor loop parameters.

The expression (1a) describes a well-known signal created in
the interference system with the main information included in
the phase factor. As was shown by J. Sakai [4] for the
polarization degree of a fiber and by W. K. Burns [5] for the
coherence degree of interfering beams, both parameters for the
Sagnac fiber interferometer are kept high being of the order
0.95. Thus, changes of the polarization characteristics influence
only the disturbance of the detected signal form (changes in
A and @, values in Eq. 1a).

These characteristics will determine by matrix representations
of fiber elements in accordance with the Jones calculus in
Sec. 2-+4. Based on that, in Sec. 5 the numerical simulation of
gyro operation is described. It allows for the bias-offset and

Fig. 1. Minimum configuration of fiber gyroscope; S — source, C1, C2
— couplers, P — polarizer, PC — polarization controller, SL — sensing
loop, PM — phase modulator, D — detector, R1,..,R5 — optical
connections
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quantum noise level parameters to be calculated. These para-
meters influence essentially on the sensitivity and the drift,
which are the fundamental technical parameters of a fiber
gyroscope. The sensitivity is defined as the minimum rotation
speed which can be detected by the gyro device; a limit is set by
the high frequency noise of the experimental arrangement [6].
The drift, in turn, can be assumed to be the uncertainty of the
device in the long term and is strictly tied with low frequency
measurement disorders. The above parameters are measured in
the built gyro model. Its configuration and results of experimen-
tal researches are presented in Sec. 6. The comparison of
theoretical and experimental values allows to develop the
method of drift limitation.

2. Jones calculus

The light wave at any point in the optical system is represented

by its Jones vector:
E= £ (2)
= E

The application of that method requires the Jones matrix
identification for each sequential element of the optical path.
Hence, each of circuit elements is represented by a 2 x 2 matrix
operator applied to the Jones vector E. The operation of the
whole optical system can be described by the product of these
matrices, according to the rules of Jones calculus [7].

The Jones calculus is limited only to a monochromatic, fully
polarized wave. However, as was shown in [8], the light source
description by means of the coherence matrix:

CEELy {EED: :
J= 4 3
[<E,E;> <EyE;>] =)

where ¢...> is an average over observation time and * means the
coupling operation of a proper component of the field £, allows
to consider additionally a partial polarization of the source. In
such case, the coherence matrix of the output beam J,,, is used
as the characteristic parameter which depends on the source
coherence matrix J, as well as on the Jones matrix of the
described system M [8]:

Jypy=M-J -M* (4)

M* is a matrix Hermitian conjugate with matrix M. If the
coherence matrix on the output of optical system is known then
the output light can be determined as

1=Tr(J,,) (5)

where TrJ is a trace of the matrix J.
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In classical optics the above formalism is well known. The
matrix representation of such elements as: isotropic and anisot-
ropic optical paths, polarizers polarization controllers, optical
modulators, etc. are determined in Ref. [9]. Application of the
Jones calculus to the all-fiber gyroscope requires the creation
of its matrix representation analogous as in classical optics. The
foundations of introducing such a representation for sing-
le-mode fibers, with assumption of the quasi-monochromatic
light source are presented below.

3. Matrix representation
of a single-mode optical fiber

An ideal single-mode optical fiber is an isotropic wavegunde
medium carrying two degenerate polarization eigenstates e, e,
[10]. They have the same spatial field distributions, propaga-
tion constants f, =f,=f, and linear, perpendicular each to
other polarization states. Assuming two eigenstates as the basis
vectors

= g £y
E(z)=E,-e1+Ey-eZ=[':| (6)
EJ’
leads, in the Jones calculus, to the determination of an ideal
single-mode fiber by means of the matrix

M=e"”’|:1 o]so(ﬁz) ™
0 1

In this case an optical fiber is equivalent physically to the
constant phase delayer (matrix D) with the delay of fiz, so it
does not change the polarization of light wave.

The polarization eigenstates and propagation constants (§,,
f.) can be changed by elasto-optic deformation, and the fiber
becomes an anisotropic medium with a determined value of
birefringence Af = |8, — B,| [11]. The changes introduced by
deformation are determined by a modified coupled modes
theory. As it was shown by J. Sakai [12], a single elastic
deformation homogeneous along the fiber of length z is
described by the following Jones matrix:

Ny, +N m, —m;
M = exp I: J 11 22 Z:| I: 1 2:|
2 m, my

Apz Ny — Ny, Apz
my=cos{— | —j:| ——|'sin|—); (8b)
2 AB 2
’ ] ZNH) - [ApZ
m;=—j- -sin| —

Ap 2

while birefringence forced by the deformation is expressed as

(8a)

where

(8c)

AB =By — Bal = [(Nyy — Nyo)? + 2N1,P117 (9a)
where '
Ny=p+w-gfei[éele,ds (/=1,2),
Ny = Noy= w-g,[8][8e]8,ds (/£ m) (90)
Ilntegration is carried out over the fiber cross-section, * means

the conjugate operation, f is the propagation constant of the
non-disturbed system, &, is the vacuum permittivity, @ is the
angular frequency of radiation and [§¢] is the disturbance tensor
equivalent to elastic deformation.

Similar solutions are obtained when the fiber is actuated by
the set of m-th order elastic deformation with different inten-
sities and directions (Fig. 2). The analysis of Eqgs. (8 +9) shows
that changes of polarization in the fiber are described by 2/V,,,
(NV,;—N,,) and not by individual expressions A,,, so for
multiply disturbed optical fiber, these parameters, as was shown
in [13], are the following:
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Fig. 2. The fiber cross-section and direction of m-th order disturbance
action. The propagation direction z was assumed

Ny —Nyy) = ZAﬁm‘cos(zwm)- (10a)

=) AB,,-sin(2@,) +) 2N} |
" m

Here, Af,, is a birefringence caused by m-th order disturbance
with main axes directed along the x, y axes. The factor N} | is

a coupling coefficient of NV} for the disturbance m, being the
result of the deformation described by a tensor with
off-diagonal elements. The above equations contain the sum of
each component of birefringence Af,, projected on the x,y axes,
except for the expression for the rotation of the optical
polarization (2N} ). The projecting angle is two times greater
than the angle w, between the disturbance axis and the
assumed laboratory system (Fig. 2). Thus, by means of
Egs. (8+10), it is possible to determine the Jones matrix for

a fiber creating a given optical element.

2N,, (10b)

4. Matrix representation
of all-fiber gyroscope elements

According to the theorem of equivalence of Jones and Hurwitz
optical systems [14], it is possible for each fiber element to
create its functional operation scheme of the form:

M= T] P;-R,"G,
ik, !

where the matrices P, R, G represent fundamental optical
elements as:

(11)

1. R — matrix of the polarization rotating elements (rotator) of

form:
cosfl —sinf
R(&) = [ J
cosf

sinf
where 6 is the rotation angle of polarization during light
transmission through this element.

(12a)

2. G — matrix of a linear phase retarder (Eq. 12b):

Gé—ééo DA—_j“10:|(12b
()=[0 e_i‘,], @) =e [01 /%)

where 20 is a measure of birefringence introduced by this
element. The matrix of constant phase delayer (matrix D in
Eq. 12c¢) is the particular case of that one, where A is a phase
delay of light wave during transmission through the given
optical element.

3. P — matrix of a polarizer (Eq. 12d):

o PRl 0] p 0O
P{pl,pz)E[ : ] A(p)E[ ],p<1 (12d, e)
0 p, 0 p

the particular case of which is the matrix of an absorber (matrix
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A in Eqg. 12e). In above matrices the elements p,, p, and p are
the amplitude attenuations of given field component.

Application of Egs. (8+10) and (11+12) allows to deter-
mine Jones matrices for constituent elements of the fiber-optic
gyroscope.

4.1. Sensor loop

A sensor loop made of a single-mode fiber of length £, wound
on the cylinder of a radius R is the main element of fiber-optic
gyroscope. This high-birefringent fiber loop was analyzed by
W. K. Burns [15]. Using that analysis it is possible to show that
the Jones matrix for a fiber of length L, birefringence A and
bandwidth of light source dw has the form [3]:

F(L,AB,dw) =D(PL) - G(3,) R{w) G(5) R(w) G(3,)
(13)

where
0, = Aﬁ‘tr"{ﬂ'_@u dy = AﬂLqu--i—(oz,

S=ADB(L—L)/2+ (9,—05), w=—/hL,,

and characteristic parameters for a high-birefringent fiber:
depolarization length — L, crosstalk — A, and phase disturban-
ces — ¢,, @, related with mode coupling for both fiber ends.

For a high-birefringent fiber L, ~16.5 cm and h=
=1.6-10"°m™! [15] and it can be shown from Eq. (13) that
w =~ 1.63-107? rad. The rotation matrices R (w) appear as unit
ones, which means no rotation. As can be seen, the sensor loop
is equivalent to the phase retarder with precisely defined axes,
which can be written as:

F(L AB.éw) =D (BL)-G(ABL/2)

(14)

4.3. Phase modulator

A phase modulator, placed at one end of the sensor loop, allows
a maximum sensitivity to be achieved for a small rotation speed.
In the fiber version it is built as a certain number of fiber turns
wound in one layer on a cylinder piezoceramic. Assuming that
the wound fiber has a certain core ellipticity e, and a twist of the
rate @, its winding into an N-turn loop of radius R causes the
induced birefringence. This birefringence gives a matrix charac-
teristic of the modulator, which, by means of egs.(8+12), can
be expressed as [3]:

M(N,e. R, @) =D(FL) R(6) R(DL) -
‘R(w,) R(—w) G(p) R(w)R(w) R(=0). (15)

where
I_Kl
W, = —0.5tan'1[ tan (ZL)],
Kz sin (20
W, = —0.5tan“|:—R*(}:|
K, + Kgcos(20)

—_— L(cos(Zw,) K, + Kgcos(20)
p = tan .

tan (ZL):I. L = 27RN
cos (2w,) z

and
Z = [K? + K% + 2K Kpcos(20) + (@, — K)*1'*  (16)

It was assumed that at the initial point of winding the ellipticity
axis of the fiber core makes the angle @ (Fig. 3) with the surface
f piezoceramic tube. Values 2K,, 2K and 2K, are temporary
birefringences induced by individual deformations of core
ellipticity, fiber bend and fiber twist respectively.

The analyzed phase modulator, besides the birefringence 2p,
introduces additionally the rotation of the polarization state of
the angle(—2w, + ®,L), in relation to the phase retarder axis on
the modulator input.
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Fig. 3. The system of axes adopted for the phase modulator description

4.4. Polarization controller

The modulator and sensor loop birefringence can lead to
changes of polarization state of the interfering light beams. In
order to fit the polarization state of both beams, a system of
polarization controller is placed at one of the ends of the sensor
loop. This element can be made on the basis of quarterwave
Lefever loops [16]. The matrix analysis of the polarization
controller activity described in paper [17] gives its matrix
characteristic as:

CP (Y, ¢) =D (BL) ‘R (wy) G (3) R(—w,)

where w, =gy —n/4, w,=gp+n/4, d= /2 + (@ — )
g =0.92 and ¢,  are setting angles of quarter-wave loops.

As can be observed, the rotation of fiber loops causes the
changes of rotation angle (in a rotator matrix R) and birefrin-
gence (in a phase retarder matrix G). These changes cause
a change of light polarization state (azimuth and ellipticity),
which allows for optional compensation of polarization chan-
ges.

(17)

4.5. Fiber coupler

A fiber coupler allowing on interfering assembly of both beams
was described using Jones calculus by L. Chen [18]. For an
ideal coupler of length L, made of the fiber with birefringence
Af, the Jones matrices of the beam passing through the coupler
(CT) and reflected one (CR) are as follows [18]:

CT(L AB,K) = D(BL) -A(cosKL) -G (—ABL/2) (18a)

CR(L,AB.K) =D (BL)-D(n/2) - A(sinKL) - G(—ABL/2)

(18b)
where K is a interfiber coupling coefficient. For such a coupler
the output polarization state is identical with the polarization
state at the output of the fiber with the same birefringence and
length as the coupler. However, the equality of power dist-
ributions between the branches requires the fulfillment of the
condition that KL == /4 + 2nm.

4.6. Polarizer

As was shown by Kinter [19] for the operation of the fiber-optic
gyroscope, the polarizer extinction ratio ¢ has a practical
importance. Writing the polarizer as a linear polarization filter
with negligible transmission losses leads to the matrix charac-
teristic of this element of the form [3]:

P —[1 3 = P(1
(e) = o B]— (1.¢)
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4.7. Light source

Assuming the approximation of quasi-monochromaticity, the
light source of the polarization degree P radiating an elliptically
polarized wave of azimuth v and ellipticity e. is defined by
a coherence matrix of the type [8]:

1 — Pcos2v cos2e

= 1 ,: P(sin2v cos2e — jsin2e:|
"7 2 | P(sin2y cos2e +jsin2e)

1 + Pcos2v cos2e
(20)

5. Simulation of all-fiber
gyroscope

Fig. 4 shows an equivalent lumped element representation
(ELER) of all-fiber gyroscope built with optical devices accor-
ding to Fig. 1. The devices in the Fig. 4 are the Jones matrices
described in Sec. 4 for polarizer P, phase modulator M,
polarization controller CP, sensing loop F and reflective CR and
transmissive CT ways of the coupler. Rotation matrices
R,.....R; represent a misalignment of birefringence axes bet-
ween elements. An additionally introduced inversion matrix /nv
determines a reflection of the system axes occurring at the pass
light through the sensor loop.

ccw
— T b—
ow ISR e [ Ry [9n
=) :
R} R2
i
pT P
[ ot
Rg Rs
CRY| |CR, cy| [cTp
i [ i ]
RE| | Rs Ra | | Ra
i ] T I
Inv Inv cP'| | cp
el ]
M MT : |:T F
a2

Fig. 4. Equivalent lumped element representation (ELER) of all-fiber
gyroscope; —» cw direction, = ccw direction

Assuming that the Sagnac effect is the only nonreciprocal
effect in the fiber-optic gyroscope, the wave passing through
a given element in the opposite direction is described by the
transposed Jones matrix. Knowledge of matrices of the gyros-
cope devices allows one to write the Jones matrix for the whole
gyro in the following form [3]:

Z=CW-ei%%2 + CCW - ¢l ("2 4072 (21)

where
CW= CRT- R; PT R";- CR:T- Rg’- Inv-M:F- (22a)
CP-R,CT,-R;"P-R,-CT, R,

OPTO-ELECTRONICS REVIEW 2°83

is the Jones matrix for the clockwise (cw) direction, while

CCW =CR]-RI-PT-RI-CT]-R;-CP"-F"- (22b)

MT-Inv-R;-CR,-R; PR, CT,"R,
is the Jones matrix for the counter-clockwise (ccw) direction. It
was assumed a priori, in Eq. (21), that the Sagnac phase shift is
A® and that the systems working in quadrature (there is
a constant /2 phase shift between cw and ccw waves). Such
a condition allows one to achieve a maximal sensitivity for
minimal rotation rate.

Substituting, in the Egs. (21, 22), the forms of the Jones
matrix for individual devices defined in Sec. 4 allows, through
relations (4, 5), a numerical simulation of the gyroscope
operation. The output signal achieved in this case, compatible
with the relation (1), depends on a group of 36 parameters
characterizing fiber devices. The influence of these parameters
on the form of detected signal (values A and @, in Eq. 1a) can be
numerically calculated [3].

Fig. 5 presents the results of a simulation of all-fiber
gyroscope performance. The misalignments of birefringence
axes in connections of the coupler with polarizer (matrix R,),
and coupler with sensor loop end (matrix R5) were assumed to
be variable parameters. Physically it seems that the state of
polarization (SOP) of the beam input at the polarizer and the

0.250
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30 ‘o o-a T a-8 -Ekn R5 10,248
=94 6-0-0-0 B a8 g —
Salrnih e, ‘a. 0246 3
o 8 kel B--gr- 2
LU 10248
= 000 PINT, Ry
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206 _oBIAS Ry {023 @
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Fig. 5. Changes of intensity scale factor (4) and phase bias-offset (&@,)
versus angle of the misalignment of element birefringence axis (matrices
R, and R;)

beam input from one end of the coupler to the high-birefringent
fiber of the sensor loop are mismatched.

As may be noticed, the wave SOP change before the polarizer
causes changes of intensity scale factor mainly, and this in turn
influences the systems sensitivity. The axis misalignment bet-
ween coupler and sensor loop end generates a great bias-offset
value which is shown as the system drift.

The general analysis of drift in Ref. [20] shows that the main
components of drift are the fiber birefringence changes. A phase
bias-offset which is source of it can be expressed as:

AD Im (S(Puﬂix _p;1plz}xy‘ +52p1zpz| {IV|2_|X|2))
R
oy X% + &2 lpa v

(23)

where ¢ — polarizer extinction ratio, p,,. p,, and p,, — Jones
components describing loop fiber, x, y — components of source
polarization vector (as the Jones vector x=£,, y = £).
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An extinction ratio appears as the main part of the phase error
and it depends on a polarization modes relation which is
expressed by a x y* factor. The slow phase changes between
xand y are the drift components because they exist in a detected
band in the 1 Hz range. The quick phase changes will cause the
shift of considered drift component beyond the detection band
what is possible by source power modulation. The changes of
phase relations between the TE and TM modes of a semicon-
ductor laser can be induced by variations of supply current [21].
Than, the average frequency of emitted light is changed too,
what is profitable effect because the Sagnac phase measure-
ment error is the result of inequality of optical distances. At the
same time the frequency change causes the phase shift variation
and if the speed of these changes is suitable they will be
removed beyond the band of detection. The modulation does
not induce disorders in the detected signal.

The next part of the error expressed by equation (23) depends
on &2 and can be limited by the equalization of the polarization
modes in front of the polarizer, |x| = |y|. The same effect can be
obtained by the introduction of phase changes between com-
ponents p,, and p,, and frequencies chosen beyond the
detection band.

The gyro sensitivity particularly depends on quantum and
thermal noise as was shown in [20]. For that reason, the
possibly high value of photodiode load resistance appears as
a substantial component of sensitivity increase.

The above theoretical and numerical results of analysis were
confirmed experimentally by drift and noise measurements. The
results are presented in next section.

7. The arrangement of all-fiber gyro
research set-up

In practice, two polarization controllers, were placed on the
loop ends (Fig. 6) [20]. The third one, located in front of the
polarizer, allows one to match the input polarization to the
polarizer characteristic. The sensor loop shown in Fig. 6 was
made by winding a high-birefringent fiber 380 m long. The
radius of the loop was 0.1 m. The standard YORK polarizer and
couplers were applied in presented model. A high-birefringent
fiber wound on the piezoceramic cylinder of 0.08 m diameter

|[MobuLATION| [AMPLIFIER] | O'SICILL-A'T_OR.]
[FILTER —— LOCK-IN
SYNCHRONOUS ELER)

DETECTION UNIT

PRINTER MICROCOMPUTER |

DATA MONITORING UNIT

AMPL
]

Fig. 6. The arrangement of Sagnac fiber interferometer model: S — laser,
D — detector, C1, C2 — couplers, PC1, ..., PC3 controllers, P — polarizer,
PM — phase modulator, SL — sensor loop
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was applied as a phase modulator used for synchronic detec-
tion. The required 7/2 phase shift was obtained for 144 kHz and
0.85 V.

The connections between elements were made by fusion. The
total loss was estimated as 26 dB. The source of light,
a semiconductor GalnAsP laser, has an output power for
4 =1.3 gm in the 1 mW range. The detected signal passing
a low noise amplifier had been synchronically processed and
then the results were displayed on the monitor screen (Fig. 6).

The registration of Sagnac phase shift caused by the rotation,
the noise and drift estimation was possible by suitable
microcomputer processing (Fig. 7) [20]:

2
—[v()dt,
(F2 1), (24)

K. 2 Drift\> 2
Noise = [—— | (v(r) - —) dr]
{32 = I1) 1 K

where t,, t, — the initial and final time of drift and noise
estimation, K —scale factor dependent on measured signals
amplification, v(tf) — registered results related to rotation
velocity.

Drift =

r

Vit)

f, i time

Fig. 7. An idea of drift and noise estimation. Non-rotating conditions

The measurement of small velocities was based on the Earth
rotation. The special post was built for that purpose which
allows the axis of measured velocity to be maintained perpen-
dicular or parallel to the Earth axis (Fig. 8).

Experimental results of that parameter estimation are shown
in Fig. 9. It can be seen that noise was 0.25 deg/h and sensitivity
of all-fiber gyroscope may be taken as 0.25 deg/h for SNR
assumed to be 1.

The sensitivity of the model described above can be taken as
0.14 deg/h for a load resistance range of some hundred ohms
and a detection band 1 Hz wide [20]. The conformity of
theoretical and experimental results is quite good, hence the
prospects of all-fiber gyroscope application for internal naviga-
tion systems appear reasonable.

The correctness of the model was tested on the basis of Earth
rotation measurements (Fig. 10). For that purpose the axis
sensor loop was positioned according to cardinal points. It can
be noticed that the value and rotation-direction are recorded
correctly. The lack of zero points in the W—E setting was
caused by adjustment troubles.

The long term recording results are shown in Fig. 11. The
system was set in the W—E direction, which allows one to
measure the drift only (rotation is eliminated). Itis easily noticed
that drift was about 5 deg/h.

The theoretical analysis presented in Sec. 6 was shown so
drift may be limited by the source modulation, than the laser
power was modulated by 100% fulfilled rectangular signal. The
results are shown in Fig. 12.
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Fig. 8. An arrangement for Earth rotation measurements: a) the axes are
parallel (Earth rotation measurements), b) axes perpendicular (the
influence of Earths rotation eliminated), ¢) interferometer model

4+ nldeg/h] NOISE=0,237
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Fig. 9. Sensitivity of interferometer (experimental results)

The light source modulation allowed the system drift to be
reduced by a factor of about four to 1.25 deg/h. A suitable
matching of modulation amplitude may be the way to achieve
farther drift limitation. For that purpose it is necessary to know
the dynamic properties of the semiconductor laser. The modula-
tion of phase components between birefringence modes ap-
pears as technically easier. It is possible for the system to be
made completely with high-birefringent fiber.
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11. Long term stability-drift of system
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12. Drift of the system in the case of light source power modulation
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The defined drift value of the system was about 1.25 deg/h
(Fig. 12) during 5 hours of the system was working. The
changes of environment temperature during the experiments
are main source of this disturbance. The changes of the order of
2+ 4°C had an important influence on the work of the polariza-
tion controller [22] placed near connections described in the
theory by matrices R,, Rs and R,,. It caused a misalignment of
birefringence axes between devices of the order of 10 deg. As it
can be seen from results in Fig. 5, such a misalignment causes
a bias-offset of the order of several deg/h, which is a direct
source of the drift.

8. Conclusions

The achieved results show that the Jones calculus can be used
for the description of fiber elements. With the application of
Jones calculus, it is possible to analysis the influence of device
parameters on the changes of the polarization of a light beam
passing through the fiber element. The block structure of the
Jones calculus allows an easy, especially numerical, analysis of
the optical system operation by simulation of its operation.
Such a calculus is especially helpful while analyzing systems
containing a lot of fiber elements whose parameters can
change.

Obtained theoretical results have been confirmed experimen-
tally in Sec. 6. Due to this one can assume that the theoretical
description is proper and efficient.

The results presented above show that the sensitivity an-
ticipated theoretically can be obtained by suitable technical
construction of electronic gyroscope parts. However, the mini-
mum value depends on optical gyroscope components such as
sensor loop radius, fiber length, fiber losses, total system losses
and light source power.

Drift appears to be a more important problem than noise
reduction alone. It can't be eliminated by a straightness of the
detection band because of its dependence on nonreciprocal
phenomena. From that reason the elimination of the source drift
is the best method of its reduction. The proposal described in
this paper, which allows one to reduce the drift by modulation,
may be a good way, nevertheless it is only a half-measure.

Application of all-fiber gyroscope as an inertial navigation
system requires sensitivity of 0.01 deg/h range, while drift has
to be less than 0.5 deg/h. Our experimentally obtained results
show that the parameters are one order of magnitude below this
range.
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