Optical absorption and luminescence of LiTaO₃:Cr and LiTaO₃:Cr,Nd crystals* S. GOŁĄB¹, I. SOKÓLSKA¹, G. DOMINIAK-DZIK¹, and M.N. PALATNIKOV², N.V. SIDOROV², I. BIRYUKOVA², V.T. KALINNIKOV², W. RYBA-ROMANOWSKI¹ ¹Institute of Low Temperature and Structure Research PAN, 2 Okólna Str., 50-422 Wrocław, Poland ²Institute of Chemistry, Kola Science Centre RAN, 14 Fersman Str., 184200 Apatity Region Murmansk, Russia The interest in LiNbO₃ and LiTaO₃ crystals doped with transition metal or rare earth ions is related to their potential application as self-switching and self-frequency doubling laser materials. In the past considerable attention has been paid to LiNbO₃ crystals doped by variety of luminescent ions. In particular LiNbO₃:Cr was investigated recently by Macfarlane et al. [1]. Energy transfer between Cr^{3+} and Nd^{3+} in LiNbO₃ has been studied and discussed by Vergara et al. [2]. In this work we investigate spectroscopic properties of Cr^{3+} and Cr^{3+} - Nd^{3+} interaction in LiTaO3 using optical absorption, luminescence and luminescence decay times at temperatures between 5 K and 300 K. Some preliminary data obtained with singly doped LiTaO3:Cr at low activator concentration are given in our previous work [3]. Recorded spectra indicate that both the Cr^{3+} and Nd^{3+} are located in several non-equivalent sites that differ in the strength of the crystal field. Luminescence spectrum of Cr^{3+} consists of a broad band whose maximum and intensity depend on temperature. Below about 50 K an additional sharp band with four distinct components appears in the spectrum. The broad band attributed to the spin allowed 4T_2 - 4A_2 transition of Cr^{3+} ions overlaps two absorption bands of Nd^{3+} ions at about 810 nm and 890 nm making the Cr^{3+} - Nd^{3+} energy transfer process feasible. Results of measurements are discussed and compared to those obtained with LiNbO3:Cr. Keywords: energy transfer, luminescence, non-equivalent sites #### 1. Introduction In recent years, number of studies has been directed to improve the efficiency of Nd³+ lasers by codoping with donor ions having broad optical bands. Particularly, the interest in LiNbO₃ and LiTaO₃ crystals doped with rare earth and transition metal ions is related to their potential application as self-frequency doubling and self-Q switching laser materials. Transition ions have been added to rare earth laser materials to sensitise the luminescence and thereby to improve the pumping efficiency. The earlier investigations of crystals: LiNbO₃:Cr [1], LiTaO₃:Cr [3] and LiNbO₃:Nd, LiTaO₃:Nd [4,5] show, that both dopant ions are re- placing Li⁺ and Nb⁵⁺/Ta⁵⁺ or vacancy sites for the reasons of local charge compensation. It is expected that dopant ions in these sites have to be located in near positions and the energy transfer between Cr³⁺ and Nd³⁺ ions is expected to occur in the double doped system. LiNbO₃ doped with Cr³⁺ and Nd³⁺ ions has been studied by Vergara et al. [2] to check the possibility of a Cr³⁺ to Nd³⁺ energy transfer process. In this work the optical properties (absorption, luminescence and lifetimes) of LiTaO₃:Cr³⁺ and LiTaO₃:Cr,Nd crystals have been studied to check the possibility of Cr³⁺ to Nd³⁺ energy transfer. ## 2. Experiment LiTaO₃:Cr crystal containing 0.005 wt % of Cr, LiTaO₃:Cr,Nd crystal containing 0.1 wt % of Cr $(1.7 \times 10^{19} \text{ ions/cm}^3)$ and 0.2 wt % of Nd $(7.1 \times 10^{19} \text{ cm}^3)$ ^{*} The paper presented there appears in SPIE Proceedings Vol. 3724, pp. 234–238. ions/cm³) and LiTaO₃:Cr,Nd crystal containing 0.1 wt % of Cr $(1.7 \times 10^{19} \text{ ions/cm}^3)$ and 0.4 wt % of Nd $(3.51 \times 10^{19} \text{ ions/cm}^3)$ were grown by the Czochralski method from a congruent melt. Absorption spectra were measured with the Varian model 2300 absorption spectrophotometer. Luminescence spectra and decay kinetics were obtained after excitation by second harmonic YAG:Nd pumped dye laser $(\lambda_{\text{max}} = 621 \text{ nm}, 10 \text{ Hz}, 8 \text{ ns pulse})$. Emitted light was dispersed by double grating monochromator (Zeiss GDM1000), detected with a cooled photomultiplier with S-1 spectral response. Resulting signal was averaged with the Stanford Model SRS250 boxcar averager. For 5 K measurements a continuous-flow helium cryostat (Oxford CF1204) with a temperature controller was used. #### 3. Results and discussion The room temperature unpolarized absorption spectra of LiTaO₃:Cr crystal (lower curve) and LiTaO₃:Cr,Nd crystal (upper curve) are shown in Fig. 1. They consist of two broad bands associated with well know spin allowed vibronic transitions: ${}^4A_2-{}^4T_1$ centered at 21807 cm⁻¹ and ${}^4A_2-{}^4T_2$ located at 15291 cm⁻¹. The line centered at 13918 cm⁻¹ is associated with the spin forbidden, non-phonon ${}^4A_2-{}^2E$ transition. In 800–400 nm spectral region all observed absorption transitions of Nd³⁺ ions take place from the ${}^4I_{9/2}$ ground state to the excited states and are superposed absorption spectrum of chromium. In Fig. 1 the arrows show the transitions associated with Nd³⁺ ions. Fig. 1. Unpolarized absorption of LiTaO₃:Cr (lower curve) and LiTaO₃Cr,Nd (upper curve) recorded at room temperature. The arrows indicate the transitions associated with Nd³⁺ ions. Fig. 2. The absorption spectrum for LiTaO₃:Cr,Nd recorded at 5 K. Figure 2 shows the absorption spectrum of LiTaO₃:Cr,Nd crystal recorded at 5 K in 680–760 nm spectral region. The line associated with 4A_2 – 2E transition is broad and asymmetric what suggests that Cr³⁺ ions occupy several different crystal sites. The absorption transitions from the $^4I_{9/2}$ ground state to the $^4F_{7/2}$ and $^4S_{3/2}$ excited states of Nd³⁺ ions are shown. Luminescence spectrum for LiTaO₃:Cr crystal (lower curve) and for LiTaO₃:Cr,Nd crystal (upper curve) recorded under excitation into ⁴A₂–²T₂ band of Cr³⁺ at 5 K is shown in Fig. 3. A broad emission band centered at 11250 cm⁻¹ is associated with ⁴T₂–⁴A₂ vibronic transition of Cr³⁺ ions. The details of the ²E–⁴A₂ chromium transition are shown in the inset. Fig. 3. Luminescence spectra for LiTaO₃:Cr (lower curve) and for LiTaO₃:Cr,Nd (upper curve) under excitation into ${}^4A_2 - {}^2T_2$ band of Cr³⁺ ions recorded at 5 K. The inset shows the details of ${}^2E - {}^4A_2$ transition of Cr³⁺ inticated by arrow on the lower curve. We assume that four components of this line are R lines of Cr^{3+} in Ta^{5+} and Li^{+} sites. For $LiTaO_3$:Cr,Nd crystal the observed emission of Cr^{3+} and Nd^{3+} ions is associated with simultaneous absorption of neodymium from the 4I_9 ground state to the $^4F_{3/2}$ and $(^4F_{7/2}, ^4S_{3/2})$ excited states. The emission band associated with $^2E-^4A_2$ transition of Cr^{3+} is not observed. This is presented in Fig. 3 (upper curve). The values of Cr³⁺ lifetime for crystals with different concentration of Nd³⁺ ions measured at 5 K are gathered in Table 1. Table 1. The values of Cr³⁺ lifetime for crystals with different concentration of Nd³⁺ ions, measured at 5 K. | Nd concentration (wt %) | $\tau_{\rm m}$ at 5 K (μ s) | | |-------------------------|----------------------------------|-----| | | ⁴ T ₂ | ²E | | 0.00 | 8 | 370 | | 0.20 | 7.2 | 100 | | 0.40 | 5.8 | _ | The lifetime of Cr³+ both at the 4T_2 level and at the 2E level decreases with increasing of Nd³+ ions concentration in the crystals. It is an evidence that the Cr³+ to Nd³+ non-radiative energy transfer occurs. In order to estimate the energy transfer rate we used a simple formula: $$k_{tr} = \frac{1}{\tau} - \frac{1}{t_0} \tag{1}$$ where τ and τ_0 is the donor (Cr³⁺) low temperature lifetime of the 4T_2 level measured in the presence and the absence of acceptors (Nd³⁺), respectively. The efficiency of energy transfer calculated as: $$\eta = \frac{k_{tr}}{k_{tr} + 1/\tau_0} \tag{2}$$ is equal to 0.1 and 0.27 for the crystals containing 0.2 wt % and 0.4 wt % Nd ions, respectively. The lifetime decrease of the 2 E level is observed, too. It changes from 370 µs for LiTaO₃:Cr crystal to 100 µs for LiTaO₃:Cr,Nd crystal containing 0.2 wt % of Nd³⁺ ions, and the luminescence from ²E level is not observed for LiTaO₃:Cr,Nd crystal containing 0.4 wt % of Nd. This fact clearly indicates that the non-radiative energy transfer process occurs from this level too. However, the efficiency of this process is relatively low for heavily doped crystals. Probably, this is the reason that non-radiative energy transfer was not observed in the lowest doped LiNbO₃:Cr,Nd crystals [2]. #### 4. Conclusion In LiTaO₃:Cr,Nd crystals the lifetimes of the ⁴T₂ and the ²E levels decreases with increasing of Nd³⁺ ions concentration. The non-radiative energy transfer from Cr³⁺ ions to Nd³⁺ ions occurs, however calculated efficiency of this process is relatively low. ### References - 1. P.I. Macfarlane, K. Holliday, J.F.H. Nicholls, and B. Henderson, "Characterization of Cr³⁺ in LiNbO₃ using fluorescence line narrowing", *J. Phys.: Condens. Matter* 7, 9643–9656 (1995). - 2. I. Vergara, E. Camarillo, J.A. Sanz-Garcia, J. Garcia Solé, F. Jaque, A. Monteil, and G. Boulon, "Radiative energy transfer from Cr³⁺ to Nd³⁺ in LiNbO₃:Nd Cr", *Solid State Commun.* **82**, 733–737 (1992). - W. Ryba-Romanowski, S. Gołąb, W.A. Pisarski, G. Dominiak-Dzik, M.N. Palatnikov, N.V. Sidorov, and V.T. Kalinnikov, "Influence of temperature on the optical properties of LiTaO₃:Cr", Appl. Phys. Lett. 70, 2505–2508 (1997). - 4. J. Garcia Sole, T. Petit, and H. Jaffrezic, "Lattice location of the non-equivalent Nd³⁺ ions in LiNbO₃:Nd and LiNbO₃:MgO:Nd", *Europhysics Lett.* **24**, 719–724 (1993). - 5. R. Burlot, R. Moncorge, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Sole, and D. Cochet-Muchy "Spectroscopic investigation of Nd³⁺ ion in LiNbO₃:MgO, LiNbO₃ and LiTaO₃ single crystals relevant for laser applications", *Optical Materials* 6, 313–330 (1996).