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Various theoretical approaches used to model optical fields inside resonators of vertical-cavity surface-emitting lasers
(VCSELs) are described in the present paper. Both simplified and advanced simulations developed for both index-guided and
gain-guided VCSELs are presented. Reviews of both scalar (mostly for standard VCSEL designs polarised not very far over
their thresholds) and vectorial (for microresonator VCSELs as well as in more exact modelling of standard VCSELs) optical
VCSEL models known from scientific literature are also given.
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1. Introduction

Comprehensive computer simulations of a diode laser de-
scribe its operation with the aid of many mutually interre-
lated mathematical equations formulated for individual
physical processes taking place within a laser cavity during
a device operation. They are supplemented by expressions
giving values of device and material parameters dependent
on local conditions, i.e. material compositions, tempera-
ture, carrier concentrations, an electric field, a radiation in-
tensity, etc. Such simulations may be used to examine more
deeply physical phenomena and interactions between indi-
vidual physical processes taking place within the laser vol-
ume during its operation. Therefore advanced simulation
approaches enable us to understand better physics of these
devices in its whole complexity. This knowledge may be
used to modify laser designs and even to optimise them for
specified applications.

Fundamental principles of modelling optical phenomena
in vertical-cavity surface-emitting lasers (VCSELs) are
given in the first part of this paper [1]. In particular, electric (
E) and magnetic (H) field vectors of the laser radiation have
been found to obey the following vector wave equation

(V2 +kENE W =0, (1
where V is the Nabla operator (V2 is the vector Laplacian),

ko stands for the wave number, ¥ may be either £ or H
vectors, and Ny, is the complex index of refraction

“e-mail; nakwaski@ck-sg.p.lodz.pl

Opto-Electr. Rev., 8, no. 2, 2000

vertical-cavity surface-emitting lasers (VCSELS), optical models, simulation approaches,

NR :HR_Ikﬂ! (2)

with ngp standing for the refractive index and k. for the ex-
tinction coefficient. E or H profiles are critical in determi*
nation of many important interactions in diode lasers, in
particular — the interaction between carrier distributions
and a laser optical field, which is an essence of a laser oper-
ation itself. Therefore knowledge of the above profiles are
crucial to simulate any semiconductor laser.

The above one vector wave equation (1) may be re-
duced to the following six scalar wave equations

(A+kINZ)®,; =0, 3)
for each @; (i = x,y, z ori =1, z, ¢) component of the E
and H vectors. In the above relation, A stands for the scalar

Laplacian.

Depending on structure details, various approaches
have been used to optical modelling of VCSELs. In this
second part of the paper, optical models developed for vari-
ous VCSEL designs will be presented. The paper is organ-
ised as follows. The solution of the scalar wave equation in
the VCSEL configuration is presented in Section 2, Sec-
tions 3 and 4 are devoted to simplified scalar approaches to
the index-guided (IG) VCSELs and the gain-guided (GG)
VCSELs, respectively. Sections 5 and 6 present review of
scalar and vectorial VCSEL optical models, respectively,
known from scientific literature, which are followed by
conclusions.
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2. Solution of the scalar wave equation

On the basis of our considerations presented in the first part
[1] of the paper, in standard VCSEL designs of rather wide
active regions, it is justified to assume that the emitted radi-
ation is linearly polarised in the plane parallel to the ac-
tive-region plane (and perpendicular to the propagation di-
rection). So for this very often case, we may reduce our
considerations to one scalar wave equation of the form
given by Eq. (3) rather than to the more complicated vector
one (1). Also, because of cylindrical symmetry of most of
VCSEL devices, from now on we are using (unless indi-
cated differently) the cylindrical (1,z,¢0) co-ordinate system
(see Fig. 3 in Ref. 1), with z directed along the symmetry
axis, r perpendicular to it and ¢ is the azimuthal angle.

For the VCSEL laser light linearly polarised in the
plane perpendicular to the direction of propagation (as-
sumed to be along the z-axis)

CD;‘,’""S (r,z,9) = exp(i@y ,, s )exp(iB; z)d');i’m r, @), (4)

where @ is any transverse component of E or H vectors
and k, m, and s are the orders of azimuthal, transverse and
longitudinal modes of the laser radiation, respectively, the
scalar wave equation (3) is reduced to

+[kNE —B21=0. (5

T
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Taking into consideration cylindrical VCSEL symmetry,
the solution of the above equation may be assumed in a fol-
lowing simple form [2,3]:

(I);(.‘m(}'.ﬁa) = Ry, (rexp(ike), ©)

which transforms Eq. (5) to

2 ' : 2
4 By (), 1 (0 [k{f;v,% -p? —"‘—ZJR,”,;(:-) -0 ™
dr- roodr r

For k = 0, the solution of the above equation is a mix-
ture of the fundamental HE;; mode (the LPy; mode) and
the HE,,;, (m>1) modes (the L.Pg,, modes). For the higher k,
also the TEgy,, the TMy,,, and the HE,,,, modes (i.e. the
LP,,, modes) can be found. Usually only one longitudinal
s mode (if any) may be excited in VCSELs [4], but still
several azimuthal k™ and transverse m™ modes may be
present in their emission.

3. The simplified approach to IG VCSELSs

In the case of weakly index-guided (1G) VCSELSs, the ho-
mogeneous refractive index in the central part of the reso-
nator (ng;) is somewhat higher than that of surrounding ar-
eas (ng,) assumed to extend to infinity, i.e., for
(Np1—Ng2)/ng; << 1 and ng; > ngs
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ngy  for<ry
for |.i| =71y ’

npa(r) = { (8)

. |"R2

where r, is the radius of the active region. Then, for the
case of a negligible gain-guiding effect and for a laser light
linearly polarised in a plane perpendicular to the direction
of propagation, assumed to be along the z axis, transverse
field component Er (for transverse Hy component the equa-
tion is analogous) in the k™ azimuthal mode, the m™ trans-
verse mode and the s longitudinal mode may be written in
the well known, classical form [5]:

EF™ =y, explik@)exp(iBz) X

T (urrg ) [T @) for i <7y
| TTa, ©)
Ky (vrfrg) /K (v) for =y

where Ey .., is the electric field at the interface r = ry, [
stands for the propagation constant for the s longitudinal
mode, which should be determined from boundary condi-
tions, and J, and K, are the Bessel functions and the modi-
fied Hankel functions, respectively, both of the k™ order.
The complex u and v parameters may be determined from
the following relations:

w=ryUink -p2H)"2, (10)
v=ra(B2 —kEndy V2. (11)

The above simple approach is sometimes mistakenly
applied to more often used GG VCSELs, where its assump-
tions are undoubtedly not justified.

Resulting above solutions are called the LPy,, modes,
which in fact are usually sets of modes, for example LPy, =
HE,,, LP;, = HE,, + TMy, + TEy;, LPy; = HE,5, LPy, =
I‘]EQZ + TMOZ + TEq,, LPU3 = HE3;, LP5 = HEzg, + TMp3 +
TEgs, LPyy = HE 4, etc. When optical fields do not depend
on the @-coordinate (k = 0), single mode fields can be ob-
tained. In a uniform layer, one can always find pure TEg,
and TMg,, modes. Otherwise all modes in cylindrically
symmetric dielectric waveguides are hybrid modes, con-
taining both electric and magnetic components [6] and not
vanishing E, and H, components. B

Let us introduce a unit polarisation vector 1,. Then the
vector optical field y may be expressed as follows

¥(r,2,0) = L, y(r,2,0) (12)

It is also convenient to normalise the optical field (r,z,¢)

2m

; J- J| w(r,z,gu){zrd:dqodz =1,
00

m'f dy

(13)

O —
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where dy is the active region thickness, L is the resonator
length, and r is the structure radius. Analogously, also all
®;(r,z,9) fields are assumed to be normalised.

4. The simplified approach to GG VCSELSs

The comprehensive thermal-electrical self-consistent simu-
lation [7] of an operation of typical GG VCSELs, i.e. the
proton-implanted top-surface-emitting lasers (PITSELSs),
has revealed that the temperature and carrier-concentration
radial profiles within the broad central part of their active
regions have parabolic shapes. Therefore PITSEL resona-
tors may be approximately treated as the complex square
law (CSL) media. The above means that effective values of
both the index of refraction (ng) and the optical gain g
(which is directly proportional to the exctinction coeffi-
cient k), i.e., of both the real and imaginary parts of the
complex effective index of refraction Ny [c.f. Eq. (2)], are
varying in the active-region plane inside PITSEL resona-
tors approximately parabolically:

np(r)= nRo —anrz, (14)

gr)=go+agr’, (15)

where r is the radial coordinate, whereas ngo_go, a,, and a,
are constants, It was found [8] that in the CSL medium the
transverse modes may be expressed analytically in a form
of the Hermite-Gaussian functions as

2/
Ypg(X.0,2) = —=
1|'2p+¢p!q!w

kn . 2 .
exp[—[—z J(a +ib)r ]CXP(—IIBPQZ) , (16)

", (inJHq{ﬂ S:—J X

w

where p and q are the mode orders in the x and y directions,
respectively, ky stands for the wave vector in vacuum,
r?=x*+y?2 H, and Hy are the Hermite polynomials [9], B,
is the longitudinal propagation constant [8]:

LA ptqg+l ;
=ko|lnpp +1i— ———=(a+ib), (17
,qu 0[ RO A g(}] _— (a+ib), (17)

and

a? =\/"3”§‘0 +a§n§.o/4k§ +apngg, (18)

b? = \faf;‘ ngo +asngo /4 —aynge.  (19)
w is the halfwidth of the laser beam

w2 = k;l(a +ib). (20)

Opto-Electr. Rev., 8, no. 2, 2000

Invited paper

In the above Eq. (17), A is the radiation wavelength.
The Hermite polynomials H, and H, [9] may be written
using the Rodrigues’ formulae as [8,10]:

4P ;
H p (@) = (1P exp(x?) exp(-x?), (21)

dx plg)

or in an explicit expressions as [9]:

N n-2m
Hyo)=nt 32—
meomi(n—2m)!

(22)
where N is the largest integer equal to or less than n/2. For
the lowest n arguments the above relation is reduced to the
following forms

Ho(x) =1, (23a)
H,(x) = 2x, (23b)
Hoy(x)=4x? -2, (23¢)
Hy(x)=8x> —12x, (23d)
Hy(x)=16x* —48x% +12. (23e)

Near-field intensity profiles [11] are shown in Fig. 1 for
the lowest-order transverse modes of a typical PITSEL.
The fundamental 00 mode is symmetrically situated in the
central part of the resonator, as expected. The 10 mode has
two side-maxima penetrating partly the lossy r >r, =5 um
area. This penetration is even more intense in the case of
the 20 mode, for which intensity maxima nearly coincide
with the active-region edge. Surprisingly, the central maxi-
mum of this mode is not seen as for the analogous mode
obtained for the step-like distributions of the refractive in-
dex (see Section 3). In fact, this maximum exists, which is
confirmed by Fig. 2, but because of complex interactions
[12] between various guiding and antiguiding effects, it is
suppressed, and practically disappears. Similar behaviour is
observed for other higher-order transverse modes exhibit-
ing seemingly less numbers of intensity maxima than ex-
pected. Hence the number of such maxima on experimental
near-field VCSEL profiles cannot be used to indicate the
mode order, as it is often thought.

5. Review of scalar optical VCSEL models

In standard VCSELSs of rather wide active regions, it is jus-
tified to assume that their radiation is linearly polarised in
the plane parallel to the active-region plane at least just
over their thresholds (c.f. Section 3 of Ref. 1). Therefore in
this often case, one scalar wave equation (3) may be used
instead of more complicated its vectorial form (1). Until
now many scalar optical models of VCSEL operation have
been reported. In this section, some of them will be pre-
sented.
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Fig. 1. Near-field intensity profiles of the lowest-order

(00,10,11,20,21,22,30, and 31) transverse modes of the typical

PITSEL with the active-region radius ry = 5 pm and supplied with
the current 6 mA.

In 1995 Zhang and Petermann [13] adopted the
beam-propagation (BP) method to analysing optical-field
propagation in VCSELs. Applicability of this method is re-
stricted to relatively simple VCSEL designs. Besides, only
an averaged (with respect to the azimuthal angle) radial
profile of an optical field in a VCSEL resonator is typically
obtained with this method, although it is possible to sepa-
rate it into even and odd modes [14]. Nevertheless Zhang
and Petermann used this method and considered the optical
field in a VCSEL resonator as a superposition of a forward
travelling wave @, and a backward travelling wave @, in
the active (0. = a) and the spacer (ot = s) sections
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@(r,z)= a(; z)exp(—ik;2) + @ (1, z)exp(ik;,z) , 24)

where k;, is the wave number in the ot section ki, =
2mtng,/A with ng,, being its refractive index. Substituting
Eq. (24) to Eq. (3) and neglecting the higher-order terms
we reach two paraxial equations for the forward (+) and the
backward (-) waves travelling between resonator mirrors:

9&:* Do, (r2) _ i 1(3[ a]

+ : i | s (25
oz [ra; 5 ) A8 Balna),  (9)

where

o—g . Onpy Mgy
Ag, = | iZ S 42 RE AT 42 2 3% Ap |, (26
“ ”“"“‘[I k ar 2 ] ;

0 /i n

with o (loss), g (gain), AT (temperature increase), and An
(carrier-concentration increase) being local values of indi-
cated quantities. Equation (25) enables recalculation of the
optical-field profile step by step during its propagation.

Fig. 2. Radial intensity profiles (in arbitrary units) determined for

the 20 mode of the 5-pm PITSEL for operation currents changing

by 1 mA from 3 to 18 mA. Their central parts were magnified to
show central maxima.
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The above BP approach has been successfully applied
by Wilk er al. [15] to investigate the radial spatial
hole-burning (SHB) effect in PITSELSs their comprehensive
self-consistent electro-opto-thermal simulation. The model
has contained detailed thermal and electrical parts, there-
fore also self-focusing and thermal-waveguiding effects as
well as many other interactions between physical phenom-
ena have been included [16]. For a typical 5.5-pm PITSEL,
three-dimensional views of intensity profiles in the ac-
tive-region plane obtained using this approach are shown in
Fig. 3 for two values of an operating current. The profiles
turned out to be distinctly of a doughnut shape with a broad
minimum around the centre of the active region and
a ring-form maximum close to its perimeter. Similar inten-
sity profiles were obtained experimentally by Wilson et al.
[17] and were attributed just to the radial SHB effect.

Yu and Lo [18] have been also using the BP approach
to model IG VCSEL:s introducing, however, the SHB effect
as the only interaction between electrical and optical phe-
nomena. This approach has been somewhat modified by
Yu et al. [19] and Yu [20,21], but its considerable improve-
ment has been just reported very recently by Man and Yu
[22]. In their simulation of the proton-implanted bot-
tom-emitting GG VCSEL, they have taken into account not
only the SHB effect, but also the self-focusing effect and
the temperature dependencies of laser threshold currents
and the voltage drop at the p-n junction. Surprisingly, al-
though the model has contained an ample thermal part,
many temperature related phenomena have been neglected,

LUB*QI
SQB |(X-Y) 7
MRy 'f.; | | S
i I|I |II %’
N B i f S =
X(pm) ™ 3 ‘;‘:&, = p 5= y(um)
(b)

Fig. 3. Intensity profiles in the active-region plane determined for
the 5.5-pm PITSEL supplied with the operation current 3 mA (a)
and 18 mA (b)
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including the thermal-waveguiding effect and temperature
influences on both electrical resistivities and thermal con-
ductivities of constituent semiconductor layers as well as
on gain parameters and absorption coefficients. This ap-
proach has been recently modified by Yu [23], but the
above shortcomings have not been removed.

In scalar approaching to optical properties of the
edge-emitting lasers (EELs), the effective-index method
was successfully applied. Its applicability for VCSELs has
been also proposed by Hadley [24]. The method implies
approximate separability of the optical field ®(r,z,¢)

D(r,z,0) = Z(z)@7(1,9) . (27)
Then the wave equation is separated into its longitudinal
and transverse parts and structure details decided about its
optical properties are embodied in the so-called effective
index. .

Hadley et al. [25] have applied the effective-index
method to comprehensive simulation of an operation of
both the PITSEL GG VCSEL and the oxide-confined IG
VCSEL. In the simulation, many interactions between indi-
vidual physical processes have been included in a self-con-
sistent manner, e.g., the SHB effect, the thermal-wavegu-
iding effect, and the temperature-dependent current leak-
age. Surprisingly, many other interactions have been ne-
glected, including the self-focusing effect as well as tem-
perature dependencies of thermal conductivities (in an ex-
plicit form) and of electrical resistivities of semiconductor
layers, and also of the local gain, optical losses, and recom-
bination coefficients. Nevertheless, the model is very so-
phisticated, and at the moment of its publishing, it was
probably the most comprehensive VCSEL simulation.

In 1997 Wenzel and Wiinsche [26] proposed the most
advanced scalar approach to optical phenomena in
VCSELs known until now. Principally, the method is
a modified version of the effective-index method, obtained
by an additional incorporation of the temporal dispersion of
the dielectric constant. Hence the averaged frequency
rather is containing information about structure details than
the average index of refraction, the authors called this
method: the effective-frequency method. Using the expan-
sion around a real reference angular frequency wg

3 2
1) ) @
_2N’% = _g_N)% +2~—§NRNG((1J—£OR)1(28)
(o c ¢

kGNE =

where Ng is the complex group index defined as Ng =
d(@Ng)/dw, we may transform the scalar wave equation
(3) into

[A+kENE (2, 01®;(r,2,0) =

= VAN (2. @NG (2,000 5,0),  (29)

where kg = wg/c and the dimensionless frequency parame-
ter v defined as-
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wp — @

-4
_ R _;21m@)

(30)
Dp A Op

v=2

plays now a role of the eigenvalue. As in the case of the ef-
fective-index method, the effective-frequency method is
associated with separability of the ®;(r,z,¢) function into
two approximately one-dimensional functions

@;(r,z.¢) = f(r,2,0)P7 (1, @), (1)
where the f function is assumed to be normalised and to
fulfil the following longitudinal wave equation

2

Z

PR .
{— +kFNE (r,z,qo)]j(r,z,qo) =
oz
= Vo (@) kENR(,2,0)Ng (r2,0)f(r,2,0) . (32)

at each lateral position (r,@). So the structure is divided into
a number of cylindrically symmetric sectors. For each of
them, constant and uniform distributions of refractive indi-
ces as well as loss or gain coefficients within all individual
layers are assumed (but they may be different in different
layers and different in different sectors). For each such
a sector, the longitudinal wave Eq. (32) is solved. Princi-
pally, the f(z) functions and the effective frequencies Vs
may be different at every position (r,p). Assuming, how-
ever, cylindrical symmetry of a device, we may obtain one
effective frequency vy and one f(z) function for each re-
gion, which means — for each r value. Then we may write
the transverse wave equation in the following form

1d( d\ k* 2
[;E(’ E.)—r—z‘f’veﬁ(’}ﬂR(NRNG),- ka(")_

2
= Vinkg (NRNG ), Rin () (33)

The radial field distribution is determined with the aid
of the transverse wave equation (33) for the complex index
of refraction in a structure averaged in the z-direction, as if
the waveguide were nearly uniform, although slow radial
changes of losses (or gain) and the refractive index are also
included. For each k" azimuthal mode, each solution of the
transverse wave equation (33) composes different mth
mode with a different value of the frequency parameter Vi,
(an cigenvalue). The algorithm needs some self-consis-
tency, because the effective frequency Vg is present in
both the nearly one-dimensional wave equations (32) and
(33). Solutions of the above equation are again LPy,
modes. The effective-frequency method enables easy deter-
mination of the threshold condition for each (k,m) mode,
requiring: Im(Vyy)g = 0. '

The effective-frequency method has been recently ap-
plied to analyse complex optical structures of nitride-based
intracavity-contacted VCSELSs [27]. This optical model has
been coupled with the comprehensive thermal-electrical
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VCSEL simulation [28,29]. Calculated gain profile exhibits
distinctly nonuniform distribution with a sharp maximum
close to the active-region edge and a deep minimum in the
centre. Not surprisingly, such a gain profile has strong im-
pact on mode profiles. Poor overlap between the gain pro-
file and the fundamental LPy; mode results in its strong
suppression, which is followed by the LPy; mode becoming
the most favoured one.

6. Review of vectorial optical VCSEL models

Scalar approaches to optical fields in VCSELSs require solv-
ing only one wave equation for an assumed linearly polar-
ised light. Fully vectorial approaches, on the other hand,
need considering six equations (12) for all (r,z,@) or (X,y,2)
components of both fields E and H. Therefore, vectorial
simulations of optical VCSEL properties are not only more
complex but they also require more computer memory and
more CPU time to be implemented.

The first vectorial analysis of optical fields in VCSELs
was reported by Thode ez al. [30] in 1994 as a part of their
time-dependent comprehensive VCSEL simulation. They
were solving the Maxwell equations using the finite-diffe-
rence (FD) algorithm, which, if carried out for the whole
laser volume, would require extensive mainframe computer
resources to be implemented. Therefore, to shorten neces-
sary CPU time, the simulation region was somewhat arbi-
trarily limited to only a cylinder of 12-pm radius and
6.75-um height. A uniform mesh was used in both longitu-
dinal and radial directions within the cylinder, therefore 80
uniform regions of average material parameters were de-
fined. In thermal and electrical parts of the model, transport
equations of six independent variables were solved: the
electric potential, the electron and hole densities, the elec-
tron and hole temperatures, and the lattice temperature. In
the model, many mechanisms of energy exchange were
taken into consideration, including the Auger recombina-
tion and the impact ionisation as well as the Shoc-
kley-Read-Hall recombination and the phonon scattering.

The above approach seems to be premature at the mo-
ment of its creation and even now, similarly as next simula-
tions of this kind reported by Ning et al. [31-34]. New
achievements of such an approach (e.g. different tempera-
tures assumed for electrons, holes and phonons) are too
subtle to have practical meaning now. Besides, there are
also some essential drawbacks of this analysis. First of all,
it considers important laser variables (e.g. temperature, car-
rier concentrations, and current densities) as position inde-
pendent, average quantities, whereas their 3D profiles are
often very nonuniform and these nonuniformities are very
important in accurate modelling of a VCSEL operation.
Furthermore, most of decay rates in the kinetic equations
are used as adjustable parameters. All construction and ma-
terial details essential for a proper VCSEL operation are
hidden in these parameters. Finally, the above parameters
depend, for example, on VCSEL thermal and electrical
resistances, whose exact determination now seems (0 be
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more essential for modelling VCSEL operation than a sub-
tle distinction between temperatures of lattice and plasma.
The distinction should be included, however, into modern
VCSEL models in future, when new computers enable us
to extend the present' 3D models without the above men-
tioned limitations.

Fully vectorial study of optical VCSEL properties was
reported in 1996 by Demeulenaere et al. [35]. They consid-
ered an idealised VCSEL structure composed of optically
uniform layers. Then, in each structure layer and for each
i" radiation mode, its propagation may be expressed as

¥i(r,z,@.t) = ¥;(r,@)exp(if,z)exp(—icwt).  (34)
Assuming an ideally cylindrical structure symmetry,
z-components of the fields within this layer may be written as
= El(r)cos(ke),

El(r,p) 35)

H!(r,p) = H.()sin(ko). (36)

Then these components may be found from the following
equations

1d( d\, 22 n2 k| El
k2n% — g2 =5 _[[Ea2|
{ dr [} *JJF 07k = Fs 2 J[H;'(r) %en

and all other field components are related to z-components
in a following way [36]:

E;;(:-,w):%gf‘gj [ “B; gir- d"‘:éf”} (38)
El(r,0)= ;*gc:;’; ”:? {ﬁ ELE;Q + @ H;'(r)] : (39)
Hi(r,p)= ’°°S(fgg [kﬁ* H:(r) + wnle, de(”J, (40)
)= A0, 0 Sty |

where a discrete set of 3, values corresponds to successive
s longitudinal modes and should be found from the
boundary conditions. From Eq. (37), the z-components
may be found in a following form

Ei0))_(4), . .
[H_f(r)] (AH}’*(””)’

(42)
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ui =kgng - B (43)

In this idealised VCSEL structure of optically uniform
layers, the optical field may be composed of pure TE and
TM modes. But, because a distribution of a complex index
of refraction in such layers is strongly influenced by non-
uniform profiles of temperature and carrier concentrations,
each real VCSEL layer is optically nonuniform, even if it
has been manufactured from a material of an exactly the
same and uniform composition. Demeulenaere ez al. [33]
were looking for the electromagnetic field in each separate
optically-nonuniform layer in a form of a series using
above presented solutions to the Maxwell equations in the
same, but uniform this time, layer as vectorial basis func-
tions [37,38], which makes finding optical-field profiles us-
ing this method an extremely time-consuming task.

Burak and Binder [39,40] reported in 1997 a similar ap-
proach, in which optical fields in a real VCSEL structure
were expanded into so called cold-cavity modes, obtained
first for a simplified case of a structure without gain and
losses. For all six components of E and H vectors, solutions
of the Maxwell equations were found in an analytical form
for this simplified case. As in the above approach of
Demeulenaere et al. [35], the total optical field is a super-
position of the TE and the TM modes and has a form of hy-
brid HE modes. For a real VCSEL structure with gain and
losses, transverse components of both the electric and mag-
netic fields in each k' layer were expressed as a superposi-
tion in a complete set of orthogonal cold-cavity hybrid
modes found in the previous step of the calculations. In this
simulation, a vectorial transform matrix approach has been
used. The method is very exact, but it also involves intense
numerical calculations. Some electro-optical interactions
have been included in Ref. 41.

In their similar vectorial approach to modelling an opti-
cal field in the VCSEL cavity, Deppe and Deng [42-44]
have expanded a radiation into planar-waves modes. They
were using the complete and orthogonal set of base func-
tions obtained with the aid of the source-free Maxwell
equations.

A very interesting vectorial approach has been recently
proposed by Noble er al. [45,46]. This model, principally
analogous to the scalar effective index method, is called the
weighted index method [47,48]. Its philosophy is different
from all the above presented vectorial approaches. Instead
of solving the exact vector wave equation with the aid of
approximate base functions, Noble ef al. [45] have replaced
the exact equations with an approximate ones and have
solved them exactly. Introducing the magnetic A and the
electric F vector potentials, the vector wave equation for
cylindrically symmetric structures will have the following
scalar Helmholz form

2 19 9 2.0 k2 |[[A,(2)
where Ag and Ay are modes amplitudes and u; may be ex- {a—g +;g + 52 +|:’"0 Ng - 2 NF e =0. (44
pressed as j ¢ e
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An arbitrary mode may be represented as a superposition of
TE and TM modes [49], which are directly associated with
the F, and A, potential components, respectively. Then
both the electric and magnetic fields are given by [50]

E=-—'—VxVx(4, -1,)-Vx(F, 1), @43
koNg

H=Vx(A, 1)-——VxVX(F,-1,), (46)
koto

which may be explicitly separated for all field components.
In the above equations, 1, is the unit vector along the 0z co-
ordinate.

Analogously to the effective index method, the weighted
index method assumes separability of both A, and F,

A, (r,z) = P(r)Xz), 47

F.(r,z) = R(r)S(z). (48)

Substituting the above relations to Eq. (44), we reach two
radial equations

d> 1d 2 k2
o+ k) ——[gr) =0, 49
[drz gem ki) 2 g(r) (49)
and two axial equations
d? o2
o+ (BF) ) =0, (50)
dr

where ¢(r) = P(r) or R(r) and &(z) = Q(z) or S(z), and o, =
TE or TM. A piecewise-constant refractive-index profile is
assumed. The above radial and axial equations are coupled
by the weighted axial and radial propagation constants
k{and B, where i and j indices are the radial and axial re-
gions, respectively. The calculations should be repeated
self-consistently for both the axial and the radial directions
until propagation constants, in two consecutive calculation
loops, remain practically unchanged.

7. Conclusions

Simulation of a VCSEL operation is often used to upgrade
our knowledge of physical phenomena taking place inside
its volume, i.e., to understand better physics of all interac-
tions between various physical processes crucial for this
operation. Very advanced computer devices, even super-
computers, are typically used in such simulations. The sim-
ulations require ample computer memories and high opera-
tion speeds to be implemented because an introduction of

. a whole complex network of many nonlinear and mutual
interactions between various physical processes is critical
for an exactness of physical modelling of this kind and
none of them should be neglected.

08 Opto-Electr., 8, no. 2, 2000

VCSEL simulations are also (and maybe mostly) ap-
plied to an optimisation of a given VCSEL design or to its
modification for a specified application. Applicability of
any approach to this end is, however, immediately associ-
ated with a quality of the computer device used during this
simulation. Therefore too sophisticated models, seemingly
very exact and elaborate, may be completely useless if they
need too long CPU time and/or too much memory of an
available computer to be implemented. Hence both simpli-
fied and advanced optical VCSEL approaches should be
available. And they both may be applied depending on an
aim of a simulation and a quality of computer devices used.
Besides simplified models are useful also during advanced
modelling to verify its exactness. Nevertheless a rapid im-
provement in achievements of computer devices observed
during last decades makes verification of usefulness of any
approach still an open question. Too advanced and too in-
volved models at present are steadily becoming more and
more suitable even for standard-level computers. Therefore
even the most sophisticated VCSEL models may have hope
to become more popular in future.
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