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Optimised tapered beam propagation

S. SUJECKTI"

National Institute of Telecommunications, 1 Szachowa Str., 04-894 Warsaw, Poland

A novel formulation of tapered beam propagation algorithm is given. The new algorithm is tested on standard taper struc-
tures in order to check the accuracy, reciprocity and the convergence rate. It is shown that the new algorithm preserves the
advantages of the previous formulation while being easier to implement and requiring less computation per one propagation
step. The results obtained by the new algorithm agree with the ones given by the standard rectangular beam propagation

method and also fulfil the reciprocity condition to four decimal places of the transmitted power:

Keywords:
1. Introduction

Integrated optics is one of the key technologies needed for
the fast development of the transparent optical networks,
i.e., optical communication systems which avoid unneces-
sary conversion between optical and electrical signal (for
example during switching).

Due to complicated geometry the design and optimisa-
tion of the integrated optics elements results usually in long
calculation times and large computer memory require-
ments. Consequently every modification of the algorithms
used, which allows obtaining accurate results faster and us-
ing less computer memory, is of great importance.

One of the basic structures, commonly used in inte-
grated optical circuits, is an optical taper [1,2]. The optical
tapers are usually utilised to minimise the coupling losses
between various light-guiding structures [3]. The standard
technique used for the design and optimisation of the opti-
cal tapers is the beam propagation method (BPM) [2.4].
This approach can be applied for a wide variety of practi-
cally useful structures. Usually BPM is applied in the rect-
angular coordinate system. As a result the oblique bound-
aries between core and cladding, which are present in the
case of an optical taper, cannot be modelled exactly and
must be approximated using staircasing. Consequently an
unphysical numerical noise resulting from presence of sud-
den dielectric discontinuities is observed in the field plots
and also influences negatively on accuracy [5]. The only
effective way of avoiding this problem, while preserving
simple interfacing with standard rectangular BPM, proved
to be the application of the beam propagation method in the
tapered coordinate system [5,6].

Although there are big advantages of applying BPM in
the tapered coordinate system the resulting paraxial wave
equation has quite complicated form in comparison with

*e-mail: S.Sujecki@itl.waw.pl

Opto-Electr. Rev., 8, no. 3, 2000

S. Sujecki

integrated optics, beam propagation method, finite differences.

the standard BPM [5,6]. Moreover the Helmholtz equation
in the tapered coordinate system contains mixed deriva-
tives, and does not allow variables separation. Thereafter
the resulting BPM algorithm has a non-standard form and
the only way of introducing the wide-angle scheme was to
apply Hadley’s recurrent formula [5,7] which, however, is
inefficient.

In this paper one-way wave equation in the tapered coor-
dinate system is derived. Then the paraaxial wave equation
is given which has particularly simple form. The obtained
propagation operator differs only slightly from the one ob-
tained in the rectangular coordinate system and allows the
direct utilisation of the sparse matrix representations of the
wide angle BPM propagator developed for uni-directional
propagation in rectangular coordinate system [8,9].

2. Formulation

Although the tapered coordinate system is not an orthogo-
nal system and therefore does not permit the wave equation
to be decomposed by separating the variables the one-way
wave equation can be obtained in a similar manner as in the
rectangular coordinate system. Not to obscure the idea the
derivations are carried out for the 2D TE case only. The
TM case derivation can be carried out in a similar manner.
To obtain the one-way wave equation in the tapered co-
ordinate system, it is convenient to start with the wave
equation in the rectangular coordinate system x, y, and z
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where k is the local wavenumber, given by n(x,z) 2m/A,,
n(x, z) is the y independent refractive index at the operating
wavelength A, (Fig. 1) and y(x,y,z) denotes the y compo-
nent of the electric field. .
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Fig.1. Asymmetric 2D taper structure.

The tapered coordinates t and { can be related to x, and
zbyx=tzand { =z

The derivatives appearing in Eq. (1) can be
re-expressed in terms of t and { by using the following
identities
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Substituting these expressions into Eq. (1) and rear-
ranging gives

32
7 o7 kB —ﬁsz(s,c), @

d
[ac: gar) wine (?

where B is a reference propagation constant. Expressing the
Helmholtz equation in the tapered coordinate system in the
form of Eq. (2) is the key point of this derivation as it fol-
lows that the one-way wave equation can be expressed as
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It can also be noted that the square root operator does not
differ from the one, which is obtained in the rectangular co-
ordinate system. Consequently the sparse matrix represen-
tations, which are optimised for the suppression of the eva-
nescent waves, developed in acoustics [8] and optics [9]
can be utilised directly.
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The paraxial BPM can be now obtained approximating
the square root operator using a truncated (after the second
term) Taylor series expansion. After having introduced the
envelope function — y({,z) = @({,z)exp(£jBz) the paraxial
wave equation in the tapered coordinate system is obtained
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The higher order approximations of the square root op-
erator can be easily introduced analogously to the standard
rectangular BPM. The guidelines for a suitable choice of
B can be found for example in Refs. 2 and 5. The form of
the obtained paraxial wave equation is much simpler than
the one presented in Refs. 5 and 6. It differes only from the
rectangular coordinate case by the presence of the term t/{
d/dt. Consequently extension of the standard rectangular
BPM to the tapered one becomes now a minor correction
and the additional computations required are reduced.

The right hand side (RHS) operator in Eq. (4) can now
be discretised using finite difference (FD) method. The re-
sulting matrix equation can be solved using a Crank-
-Nicholson scheme. Denoting the RHS operator of Eq. (4)
as M = A + B, where
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where the superscript d denotes the FD discretised counter-
part of a respective differential operator. Equation (5) can
be handled using a standard tridiagonal matrix solver [5].
At the boundary of the analysis window a transparent
boundary condition is assumed [10].

3. Results and discussion

In order to verify the convergence rate, accuracy and reci-
procity the results obtained are compared with quite re-
cently published benchmark results [11]. The structures
studied are an asymmetric air clad and a semiconductor
clad taper (Fig. 1). The air clad taper is decreased from a
width of 0.8-0.4 pm over a distance of either 22.9 pm or
229 pm. The semiconductor clad taper is tapered from the
width of 0.2-0.1 pm over a distance of either 5.73 pm or
57.3 pm.

In Figs. 2(a)-2(d) the dependence of the power content
guided in the fundamental TE mode measured at the end of
the taper on the transverse mesh size is shown. In order to
fulfil the reciprocity condition the power transfer between
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Fig. 2. Dependence of power content in fundamental x-polarised mode at the end of a symmetrical taper on the transverse mesh size;
(@) H=0.2 pm, h=0.1 pm, L = 5.73 pm, ny = 3.17,np=3.3,n3=3.17, L = L.55 pm
(b) H=0.2pm, h=0.1 pm, L =573 pm, n; =3.17, mp = 3.3,n3=3.17, A = 1.55 pm
(¢)H =08 pm, h = 0.4 pm, L = 22.9 pm, n; = 1.00, n; = 3.3,n3=3.17, A = 1.55 pm
(d) H=0.8 pm, h = 0.4 pm, L = 229 pm, n; = 1.00, np = 3.3,n3=3.17, A = 1.55 pm
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input and output has been calculated using J.l.E
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|2 dx as
conserved quantity [11]. It was also assumed that the initial
field distribution corresponds to the local fundamental
mode. As can be seen the results obtained applying the fi-
nite difference beam propagation method in the tapered co-
ordinate system (tapered FD-BPM) converge much faster
than in the case of the finite difference beam propagation
method in the rectangular coordinate system (rectangular
FD-BPM). Consequently, the desired accuracy can be ob-
tained using smaller matrices, which results in relaxing the
memory requirement and decreasing the calculation time.
Moreover, it is noted that the advantage of applying the ta-
pered FD-BPM is especially pronounced in the case of
strongly guiding structures, i.e., Figs. 2(c) and 2(d).

In Figs 3(a)-3(d) the dependence of the power content
in the fundamental TE mode measured at the end of the
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taper on the number of steps needed by a BPM algorithm to
calculate the output field profile is shown. As it can be
seen, the results obtained applying the tapered FD-BPM
converge usually faster or at a similar rate as in the case of
the rectangular FD-BPM.

In Figs. 4-7 the intensity distributions of the y compo-
nent of the electric field are given. The results presented are
normalised with respect to the maximum field intensity of
the input field distribution. In the contour plots the lines of
constant field intensity are given starting at 0.1 of the maxi-
mum value with an increment of 0.2. It is noticed that for the
semiconductor clad structure with the length of 5.73 pm the
contours are almost the straight lines, Fig. 4, as if the guided
light was not following the taper structure. Consequently the
circular wave fronts observed typically in tapers [12] are not
present here. Thereafter for this particular structure the ad-
vantages of applying the tapered coordinate system are
smaller as it is indicated also by the results depicted espe-
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Fig. 3. Dependence of power content in fundamental x-polarised mode at the end of a symmetrical taper on the number of the propagation steps,
() H=0.2 pm, h=0.1 pm, L = 5.73 pm, n; = 3.17, n, = 3.3, n3 = 3.17, A =1.55pm
(b) H=0.2 um, h = 0.1 pm, L = 57.3 pm, n; = 3.17, np = 3.3, n3 = 3.17, A = 1.55 um
() H=0.8 pm, h = 0.4 pm, L = 22.9 pm, n; = 1.00, n; = 3.3, n3 = 3.17, A =1.55pum
(b) H=0.8 pm, h = 0.4 pm, L = 229 pm, n; = 1.00, n; = 3.3, n3 =3.17, L = 1.55 pm

Table 1: Power content in the fundamental TE mode at the and of the tapers: Air: W; = 0.8 pm, W, = 0.4 pm, n; = 3.3, ny = 3.17,

ng=1.0,1°: L =229 pm, 0.1°: L = 229 pm; Semi: W; =

0.2 pm, W, = 0.1 pm, ng = 3.3, ng=3.17,n, = 3.17, 1°: L=5.73 m, 0.1°:

L =57.3 pm.

Air: 1° Air: 1° Air: 0.1° Air: 0.1° Semi: 1° Semi: 1° Semi: 0.1° | Semi: 0.1°

forward backward forward backward forward backward forward backward
(%) (%) (%) (%) (%) (%) (%) (%)
Twente” 82.30 82.30 96.81 96.64 91.18 91.19 97.32 97.30
Porto” 82.20 82.40 96.70 96.60 91.19 91.19 97.31 97.30
.Hagen* 81.50 81.40 96.36 96.36 91.19 91.19 97.28 97.28
HHI" 81.60 81.50 96.70 96.50 91.10 91.20 97.50 97.50
Thomson” 82.10 82.30 96.54 96.61 91.18 91.18 97.28 97.27

Tapered” 82.24 82.24 96.63 96.63 91.18 91.18 97.29 97.29 ]

Rectangular’ ] 82.24 82.24 96.63 96.63 91.18 91.18 97.29 97.29

“Results publishd in Ref. 11.
°Results obtained by the author.
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-polarised case in symmetrical

Fig. 5. Field intensity plots for x

Fig. 4. Field intensity plots for x-polarised case in symmetrical
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Optimised tapered beam propagation

cially in Fig, 3(a). However, if the wave fronts indicate typi-
cal circular character, namely in the case of strongly guiding
structures, the tapered FD-BPM is by far superior to the rect-
angular one [Figs. 2(c) and 2(d) and Figs. 3(c) and 3(d)].

In Table 1 the power content in the fundamental TE
mode measured at the end of the taper is given. A good
agreement is generally observed with other authors. It is also
noticed that the results obtained by the author using tapered
FD-BPM and rectangular FD-BPM agree to the fourth deci-
mal place and also indicate reciprocity on four digits. To the
best knowledge of the author such agreement obtained using
two independent BPM approaches is reported for the first
time. The results obtained by the author indicate also that the
larger discrepances with the results obtained by other au-
thors can be explained by the fact that they were not using
sufficiently fine finite difference meshes.

4. Conclusions

A new formulation of the tapered finite difference beam
propagation method in the tapered coordinate system is
given. The results obtained confirm that the new algorithm
preserves the advantages of the previous formulation while
being easier to implement and faster.

A four digit agreement is observed between the results
calculated be the two independent BPM methods, namely
tapered and rectangular FD-BPM. To the best knowledge
of the author such agreement is reported for the first time in
the literature.
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