OPTO-ELECTRONICS REVIEW 8(4), 350-352 (2000)

Heterostructures Ge, Si,_/Si as a material for solar cells
E.M. SHEREGII, M.M. POCIASK", G. TOMAKA,
T. KAKOL, and M.A. POCIASK

Institute of Physics, Pedagogical University,
16A Rejtana Str., 35-310 Rzeszéw, Poland

In Ge-Si heterostructure system, strain and compositional changes can be used to change the fundamental indirect absomp-
tion edge. It is well known that increase in Ge content in the Ge,Si,_, shifts fundamental band edge to the longer wave-
lengths and causes strong increase in absorption coefficient. Theoretical description of increase in efficiency of solar cells
based on this system in comparison with the silicon solar cells is given. A construction of photodiodes using heterostructure

Gey»Sipg/Si is proposed.
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1. Introduction

Renewed and fast growing interest of SiGe alloys began in
the 80’s. Searching ways towards higher PV conversion ef-
ficiencies, the multiply band gap concepts have received
increased theoretical attention in the last few years. Many
of dual band gap systems are based on the semiconductor
couple Ge,Si;_/Si. This is not the optimum theoretical
couple for maximum system efficiency because of eco-
nomic and technological criteria. The Si cell may work at a
moderate concentration of infrared light non converted by
GaAs (energy lower than about 1.5 eV). By changing the
basic solar cell material from Si to some Ge,Si;  alloy
without much altering, if possible, solar technology can
take full profit to actual know-how and future improve-
ments [1-3].

The purpose of this work is to explore the possibilities
of heterostructure Ge,Si;_,/Si materials to present by mod-
elling how to construct Si-like solar cells showing en-
hanced infrared efficiencies.

Band-gap energy of Ge,Si,_, was calculated for 300 K
and then experimentally checked. Absorption coefficient of
Ge,Si,_, for infrared photon energies (hv < 1.5 eV) has
been done and it is o = 10102 cm™! for 1.1 eV photon en-
ergy. Enrich Ge in Ge,Si;_, coming to decrease energy gap
from 1.12 eV for pure Si to 0.66 eV for pure Ge through
strongly decrease in E, curve for Ge component x = 0.85.

The crystalline, unstrained Ge,Si,  alloys have been
shown to be powerful material candidates for infrared pho-
tovoltaic conversion and Ge,Si;_ solar cells used instead
of Si cells in GaAs/Si systems should improve their effi-
ciency by up to 2 points from PV-Eye 29% to 31% for x =
0.5, up to 30% for x = 0.15 [2].
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2. Simulation of solar cells efficiency

Let us analyse theoretically efficiency of barrier photocells
[5.6]

kT
N = A= RV, (1)
Eg

where R is the reflectivity coefficient, g = (1 +sd/D p)_1

is the surface recombination coefficient, d is the distance
from fluxing surface, Dp is the holes diffusion coefficient, s
is the surface recombination velocity, and

2)

In the last equation y,, is the root of equation, which is the
condition for the power maximum in outside circle

Ym =(1+z—ym)fn(1+z—ym),
0<y, <z

iy is the fluxing current component, i is the diode saturation
current, i is the whole current of photovoltaic cell, and
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Y(xy) is the function describing proportion between gener-
ation of carriers and power of electromagnetic irradiation,
Because solar irradiation is close to blackbody full irra-
diation, the Planck formula for T = T; = 6000 K (tempera-
ture of solar surface) was used. The diagram of f(z) is pre-
sented in Fig. 1 and the function y(x,) is shown in Fig, 2.
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Fig. 1. Diagram of f(z) function.
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Fig. 2. Diagram of y(x,) function.

Analysing Eq. (1), Figs. 1 and 2 we can observe that
barrier photocell can give extremely 44 points efficiency
when all external and internal energy losses can be ne-
glected. The function y(x;) has its maximum for about
E, = x,kT; = 1.1 eV, i.e., for Si band gap.

3. Theoretical considerations on heterojunction
efficiency

If we could compose heterojunction with the Si and Si-like
band gap material were able to increase theoretically effi-
ciency of system over the 44% [5,6].

In Fig. 3, energetic model of photoelectrical cell with
Ge,Si;_,/Si heterojunction is presented. Semiconductor of
n-type (Si) with the energy gap E,(Si) is the reflected side
of heterojunction, p-type (Ge,Si;_,) with the energy gap
E,(Ge,Siyy) < Eg(Si) is the back side. All photons with the
energy fid < E,(Si) are absorbed very weekly in n-area,
and barrier arising for holes is counteracting to their flow
into the irradiated surface. Photons with the energy
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Fig. 3. Schema of energetic model of photoelectrical cell with
Ge,Siy_,/Si heterojunction.

ficy > E,(Si) are strongly absorbed in n-area and p-n junc-
tion is not accessible for them. Photons with the energy
hw < E,(Ge,Si;_) do not generate electron-hole couples in
a junction region. That photocells are sensitive only for the
range of photons energy Ey(Si) — Ey(Ge,Si;_). Every
Si-like material, for which Eg is less then 1.1 eV, can be
chosen as a solar cell material on the base of hetero-
junction. However, the point is to choose material with op-
timal optical and electrical parameters. As we can see
Ge,Si; is a good candidate.

Now let us consider y(x,) for Ge,Si;_ as a germanium
component function (Fig. 4). As we notice, with Ge in-
creasing in Ge,Si;_, alloy, the function ¥(x,) decreases.
Efficiency for system GeSi/Si is given by equation

Me,si.,/si = Msi + Ne,5i, = AV(N)gi + BY(x)ge s - 4
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Fig. 4. y(x1)g, 5; function for x Ge composition, 0 < x < 0.8.
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For modelling we have chosen (energy losses are ne-
glected)

kT :
AR E (- Rs;)Bsifsi() =1 zg = 104, (5)
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The results of that simulation of 7, Si_/Si [see Eq. (2)] for
0 < x < 0.8 are presented in Fig. 5.
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Fig. 5. Efficiency 1, Si__ /si Versus X composition, 0 < x < 0.8.

4. Conclusions

Ge,Si,_ layers enriched with Ge increase absorption coef-
ficient in a fundamental band, i.e., from o = 102 cm™ to
o = 103 cmL. It is additional advantage allowing for effi-
ciency increase.

For Ge composition x = 0.1-0.2 the y(x,) function has
its maximum and consequently efficiency 7g, s; /si 15 of
the peak value. If the content of Ge in GeSi alloys will be
less then 15%, increase in production costs of solar cells is
not significant. Even if experimental efficiency of that
heterojunction will be about one-half of a theoretical value it
is satisfying for future development of solar cell technology.
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